Publications by authors named "Abdullah Chaudhary"

Huntingtin (HTT) is a scaffolding protein that recruits motor proteins to vesicular cargoes, enabling it to regulate kinesin-1, dynein, and myosin-VI-dependent transport. To maintain the native stoichiometry of HTT with its interacting partners, we used CRISPR/Cas9 to induce a phosphomimetic mutation of the endogenous HTT at S421 (HTT-S421D). Using single-particle tracking, optical tweezers, and immunofluorescence, we examined the effects of this mutation on the motility of early endosomes and lysosomes.

View Article and Find Full Text PDF

Cells precisely control their mechanical properties to organize and differentiate into tissues. The architecture and connectivity of cytoskeletal filaments change in response to mechanical and biochemical cues, allowing the cell to rapidly tune its mechanics from highly cross-linked, elastic networks to weakly cross-linked viscous networks. While the role of actin cross-linking in controlling actin network mechanics is well-characterized in purified actin networks, its mechanical role in the cytoplasm of living cells remains unknown.

View Article and Find Full Text PDF

Microtubule-associated proteins (MAPs) regulate microtubule polymerization, dynamics, and organization. In addition, MAPs alter the motility of kinesin and dynein to control trafficking along microtubules. MAP7 (ensconsin, E-MAP-115) is a ubiquitous MAP that organizes the microtubule cytoskeleton in mitosis and neuronal branching.

View Article and Find Full Text PDF

Organelles, proteins, and mRNA are transported bidirectionally along microtubules by plus-end directed kinesin and minus-end directed dynein motors. Microtubules are decorated by microtubule-associated proteins (MAPs) that organize the cytoskeleton, regulate microtubule dynamics and modulate the interaction between motor proteins and microtubules to direct intracellular transport. Tau is a neuronal MAP that stabilizes axonal microtubules and crosslinks them into bundles.

View Article and Find Full Text PDF

Objective: This study examined whether outpatients with a psychotic disorder who are at risk of hospitalization can be identified by using data from electronic medical records (EMRs).

Methods: Data from EMRs of outpatients enrolled in two clinics for treatment of psychotic disorders were abstracted. Monthly data were collected for 75 patients over two years.

View Article and Find Full Text PDF

The circadian oscillator of cyanobacteria is composed of only three proteins, KaiA, KaiB, and KaiC. Together, they generate an autonomous ~24-h biochemical rhythm of phosphorylation of KaiC. KaiA stimulates KaiC phosphorylation by binding to the so-called A-loops of KaiC, whereas KaiB sequesters KaiA in a KaiABC complex far away from the A-loops, thereby inducing KaiC dephosphorylation.

View Article and Find Full Text PDF