Introduction: Laron syndrome (LS) is a rare autosomal recessive disorder caused by mutations in the growth hormone (GH) receptor gene, resulting in GH resistance and reduced levels of insulin-like growth factor 1 (IGF-1). Patients with LS exhibit severe growth retardation, low IGF-1 levels, elevated basal GH, and poor response to GH stimulation. Recombinant IGF-1 is the only approved treatment and has been shown to improve linear growth.
View Article and Find Full Text PDFBackground: Congenital adrenal hyperplasia (CAH) is a heterogeneous group of adrenal steroidogenesis disorders with variable degrees of glucocorticoid, mineralocorticoid and sex steroid deficiencies. gene encodes the mitochondrial cholesterol side-chain cleavage enzyme (P450scc), which initiates the first reaction in steroidogenesis by converting cholesterol to pregnenolone. Variants in this gene are extremely rare but associated with severe forms of CAH due to its early and critical function in various steroid biosynthesis pathways.
View Article and Find Full Text PDFIntroduction: Hereditary Vitamin D-dependent rickets type II (HVDDR-type II) is a rare autosomal recessive disorder caused by molecular variation in the gene encoding the vitamin D receptor (VDR). This study aims to evaluate phenotype and genotype characteristics and long-term follow-up of the largest group of patients with (HVDDR-type II) in Saudi Arabia.
Methodology: We conducted a retrospective chart review to collect the clinical, biochemical, and genetic data for all HVDDR-type II patients currently receiving treatment at King Faisal Specialist Hospital & Research Centre, Riyadh, Saudi Arabia.
Background: Familial hypocalciuric hypercalcemia (FHH) is a hypercalcemic syndrome that is usually characterized by uncomplicated hypercalcemia and normal longevity. The inheritance pattern is autosomal dominant with high penetrance, and it affects both men and women equally. FHH is caused by mutations that disturb the normal functioning of the calcium-sensing receptor () gene.
View Article and Find Full Text PDFRickets is a childhood disorder of vitamin D deficiency that is characterized by growth retardation and impairment in skeletal mineralization. Vitamin D deficiency is usually due to decreased dietary vitamin D intake, decreased sunlight exposure, or genetic defects. A recurrent gain-of-function missense mutation (p.
View Article and Find Full Text PDFHomozygous familial hypercholesterolaemia (HoFH) is a severe form of FH in which inheritance of two defective or null mutations in genes associated with metabolism of low-density lipoprotein cholesterol (LDL-C) results in extremely high LDL-C, premature atherosclerotic cardiovascular disease (ASCVD) and mortality. Treatment of HoFH comprises a multi-modal approach of statins, ezetimibe, lipoprotein apheresis; and inhibitors of proprotein convertase subtilisin/kexin type, angiopoietin-like protein 3 (ANGPTL3) and microsomal triglyceride transfer protein. These treatments are generally costly, and patients also often require treatment for ASCVD consequent to HoFH.
View Article and Find Full Text PDFBackground: Neonatal severe hyperparathyroidism (NSHPT) is a rare disease that can be lethal. Most patients require parathyroidectomy.
Objective: Report experience in managing this severe disease.
We report the incidence, patient characteristic with clinical outcomes in patients with homozygous familial hypercholesterolemia (HoFH) in Saudi Arabia. This is a retrospective and prospective, single center study which included 37 patients 14 years and older enrolled and followed up between 2018-2021 for three years. 46% were females, 78% were offspring of consanguineous marriage.
View Article and Find Full Text PDFVitamin D deficiency remains a major cause of rickets worldwide. Nutritional factors are the major cause and less commonly, inheritance causes. Recently, CYP2R1 has been reported as a major factor for 25-hydroxylation contributing to the inherited forms of vitamin D deficiency.
View Article and Find Full Text PDFWe report the results of clinical exome sequencing (CES) on >2,200 previously unpublished Saudi families as a first-tier test. The predominance of autosomal-recessive causes allowed us to make several key observations. We highlight 155 genes that we propose to be recessive, disease-related candidates.
View Article and Find Full Text PDFBackground: Vitamin D regulates the concentrations of calcium and phosphate in blood and promotes the growth and remodeling of bones. The circulating active form of vitamin D, 1,25-dihydroxyvitamin D, binds to the vitamin D receptor (VDR), which heterodimerizes with the retinoid X receptor to regulate the expression of target genes. Inactivating mutations in the VDR gene cause hereditary vitamin D-resistant rickets (HVDRR), a rare disorder characterized by an early onset of rickets, growth retardation, skeletal deformities, hypocalcemia, hypophosphatemia and secondary hyperparathyroidism, and in some cases alopecia.
View Article and Find Full Text PDFBackground/aims: Laron syndrome (LS) is an autosomal recessive disease characterized by marked short stature and very low serum IGF-1 and IGFBP-3 levels. This study assessed the clinical and endocrine features alongside determining the growth hormone receptor gene (GHR) mutation in Saudi Arabian patients with LS in order to establish whether or not a genotype/phenotype correlation is evident in this large cohort.
Subjects And Methods: A total of 40 Saudi Arabian patients with a suspected diagnosis of LS were recruited and subjected to a full clinical and endocrine investigation together with direct sequencing of the coding regions of the GHR gene.
Familial hypercholesterolemia (FH) is most commonly caused by mutations in the LDL receptor (LDLR), which is responsible for hepatic clearance of LDL from the blood circulation. We described a severely affected FH proband and their first-degree blood relatives; the proband was resistant to statin therapy and was managed on an LDL apheresis program. In order to find the causative genetic variant in this family, direct exon sequencing of the LDLR, APOB and PCSK9 genes was performed.
View Article and Find Full Text PDFO1 Regulation of genes by telomere length over long distances Jerry W. Shay O2 The microtubule destabilizer KIF2A regulates the postnatal establishment of neuronal circuits in addition to prenatal cell survival, cell migration, and axon elongation, and its loss leading to malformation of cortical development and severe epilepsy Noriko Homma, Ruyun Zhou, Muhammad Imran Naseer, Adeel G. Chaudhary, Mohammed Al-Qahtani, Nobutaka Hirokawa O3 Integration of metagenomics and metabolomics in gut microbiome research Maryam Goudarzi, Albert J.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) is an autosomal dominant disease, predominantly caused by variants in the low-density lipoprotein (LDL) receptor gene (LDLR). Herein, we describe genetic analysis of severely affected homozygous FH patients who were mostly resistant to statin therapy and were managed on an apheresis program. We identified a recurrent frameshift mutation p.
View Article and Find Full Text PDFWe present clinical practice guidelines for the diagnosis and treatment of homozygous familial hypercholesterolaemia (HoFH) in the Middle East region. While guidelines are broadly applicable in Europe, in the Middle East we experience a range of confounding factors that complicate disease management to a point whereby the European guidance cannot be applied without significant modification. Specifically, for disease prevalence, the Middle East region has an established epidemic of diabetes and metabolic syndrome that can complicate treatment and mask a clinical diagnosis of HoFH.
View Article and Find Full Text PDFGene
July 2015
Familial hypercholesterolemia (FH) is an autosomal dominant inherited disease characterized by elevated plasma low-density lipoprotein cholesterol (LDL-C). It is an autosomal dominant disease, caused by variants in Ldlr, ApoB or Pcsk9, which results in high levels of LDL-cholesterol (LDL-C) leading to early coronary heart disease. Sequencing whole genome for screening variants for FH are not suitable due to high cost.
View Article and Find Full Text PDFFamilial hypercholesterolemia (FH) is an autosomal dominant disease predominantly caused by a mutation in the low-density lipoprotein receptor (LDLR) gene. Here, we describe two severely affected FH patients who were resistant to statin therapy and were managed on an apheresis program. We identified a novel duplication variant c.
View Article and Find Full Text PDFIntroduction: Neonatal severe hyperparathyroidism (NSHPT) is a rare disease that presents early with severe hypercalcemia. We reviewed our experience with NSHPT management at a tertiary-care institution.
Methods: A retrospective chart review was conducted for patients managed for NSHPT over the last 10 years.