Publications by authors named "Abdullah AlFaify"

The rapid advancement of additive manufacturing (AM) requires researchers to keep up with these advancements by continually improving the AM processes. Improving manufacturing processes involves evaluating the process outputs and their conformity to the required specifications. Process capability indices, calculated using critical quality characteristics (QCs), have long been used in the evaluation process due to their proven effectiveness.

View Article and Find Full Text PDF

This study investigates the influence of design, relative density (RD), and carbon fiber (CF) incorporation parameters on mechanical characteristics, including compressive modulus (E), strength, and specific energy absorption (SEA) of triply periodic minimum surface (TPMS) lattice structures. The TPMS lattices were 3D-printed by fused filament fabrication (FFF) using polylactic acid (PLA) and carbon fiber-reinforced PLA(CFRPLA). The mechanical properties of the TPMS lattice structures were evaluated under uniaxial compression testing based on the design of experiments (DOE) approach, namely, full factorial design.

View Article and Find Full Text PDF

Triply periodic minimum surface (TPMS)-based lattice structures have gained interest for their outstanding capacity to absorb energy, their high load-bearing capacity, and their high surface-to-volume ratio. This study considered three TPMS cell topologies, including Diamond, Gyroid, and Primitive. The FDM process was used to print the lattice structures with two materials: pure polylactic acid (PLA) and carbon fiber-reinforced PLA (PLA + CF).

View Article and Find Full Text PDF

One of the sustainability goals in the aeronautical industry includes developing cost-effective, high-performance engine components possessing complex curved geometries with excellent dimensional precision and surface quality. In this regard, several developments in wire electric discharge machining have been reported, but the influence of flushing attributes is not thoroughly investigated and is thus studied herein. The influence of four process variables, namely servo voltage, flushing pressure, nozzle diameter, and nozzle-workpiece distance, were analyzed on Inconel 718 in relation to geometrical errors (angular and radial deviations), spark gap formation, and arithmetic roughness.

View Article and Find Full Text PDF

Ti-6Al-4V is considered a challenging material in terms of accurate machining. Therefore, electric discharge machining (EDM) is commonly engaged, but its low cutting rate depreciates its use. This issue is resolved if graphene nanoparticles are mixed in the dielectric.

View Article and Find Full Text PDF

Laser-powder bed fusion (L-PBF) process is a family of modern technologies, in which functional, complex (3D) parts are formed by selectively melting the metallic powders layer-by-layer based on fusion. The machining of L-PBF parts for improving their quality is a difficult task. This is because different component orientations (L-PBF-layer orientations) produce different quality of machined surface even though the same cutting parameters are applied.

View Article and Find Full Text PDF

The integration of medical signal processing capabilities and advanced sensors into Internet of Things (IoT) devices plays a key role in providing comfort and convenience to human lives. As the number of patients is increasing gradually, providing healthcare facilities to each patient, particularly to the patients located in remote regions, not only has become challenging but also results in several issues, such as: (i) increase in workload on paramedics, (ii) wastage of time, and (iii) accommodation of patients. Therefore, the design of smart healthcare systems has become an important area of research to overcome these above-mentioned issues.

View Article and Find Full Text PDF