This work presents the vision pipeline for our in-house developed autonomous reconfigurable pavement sweeping robot named Panthera. As the goal of Panthera is to be an autonomous self-reconfigurable robot, it has to understand the type of pavement it is moving in so that it can adapt smoothly to changing pavement width and perform cleaning operations more efficiently and safely. deep learning (DL) based vision pipeline is proposed for the Panthera robot to recognize pavement features, including pavement type identification, pavement surface condition prediction, and pavement width estimation.
View Article and Find Full Text PDFRoutine rodent inspection is essential to curbing rat-borne diseases and infrastructure damages within the built environment. Rodents find false ceilings to be a perfect spot to seek shelter and construct their habitats. However, a manual false ceiling inspection for rodents is laborious and risky.
View Article and Find Full Text PDFThe pavement inspection task, which mainly includes crack and garbage detection, is essential and carried out frequently. The human-based or dedicated system approach for inspection can be easily carried out by integrating with the pavement sweeping machines. This work proposes a deep learning-based pavement inspection framework for self-reconfigurable robot named Panthera.
View Article and Find Full Text PDFRegular washing of public pavements is necessary to ensure that the public environment is sanitary for social activities. This is a challenge for autonomous cleaning robots, as they must adapt to the environment with varying pavement widths while avoiding pedestrians. A self-reconfigurable pavement sweeping robot, named Panthera, has the mechanisms to perform reconfiguration in width to enable smooth cleaning operations, and it changes its behavior based on environment dynamics of moving pedestrians and changing pavement widths.
View Article and Find Full Text PDF