Publications by authors named "Abdulkadir C Yucel"

As magnetic field strength in Magnetic Resonance Imaging (MRI) technology increases, maintaining the specific absorption rate (SAR) within safe limits across human head tissues becomes challenging due to the formation of standing waves at a shortened wavelength. Compounding this challenge is the uncertainty in the dielectric properties of head tissues, which notably affects the SAR induced by the radiofrequency (RF) coils in an ultra-high-field (UHF) MRI system. To this end, this study introduces a computational framework to quantify the impacts of uncertainties in head tissues' dielectric properties on the induced SAR.

View Article and Find Full Text PDF

A dual-polarized compact Vivaldi antenna with high gain performance is proposed for tree radar applications. The proposed design introduces an array configuration consisting of two pairs of two Vivaldi elements to optimize the operating bandwidth and gain while providing dual-polarization capability. To enhance the gain of the proposed antenna over a certain frequency range of interest, directors and edge slots are incorporated into each Vivaldi element.

View Article and Find Full Text PDF

Transcranial Magnetic Stimulation (TMS) is a non-invasive brain stimulation technique that uses a coil to induce an electric field (E-field) in the brain and modulate its activity. Many applications of TMS call for the repeated execution of E-field solvers to determine the E-field induced in the brain for different coil placements. However, the usage of solvers for these applications remains impractical because each coil placement requires the solution of a large linear system of equations.

View Article and Find Full Text PDF

Objective: Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation technique used to generate conduction currents in the head and disrupt brain functions. To rapidly evaluate the tDCS-induced current density in near real-time, this paper proposes a deep learning-based emulator, named DeeptDCS.

Methods: The emulator leverages Attention U-net taking the volume conductor models (VCMs) of head tissues as inputs and outputting the three-dimensional current density distribution across the entire head.

View Article and Find Full Text PDF

A butterfly-accelerated volume integral equation (VIE) solver is proposed for fast and accurate electromagnetic (EM) analysis of scattering from heterogeneous objects. The proposed solver leverages the hierarchical off-diagonal butterfly (HOD-BF) scheme to construct the system matrix and obtain its approximate inverse, used as a preconditioner. Complexity analysis and numerical experiments validate the construction cost of the HOD-BF-compressed system matrix and inversion cost for the preconditioner, where is the number of unknowns in the high-frequency EM scattering problem.

View Article and Find Full Text PDF

A compact ultra-wideband dual-polarized Vivaldi antenna is proposed for full polarimetric ground-penetrating radar (GPR) applications. A shared-aperture configuration comprising four Vivaldi elements for orthogonal polarizations is designed to reduce the low-end operating frequency and improve the port isolation with a compact antenna size. The directivity of the antenna is enhanced by the oblique position of the radiators and the implementation of a square loop reflector.

View Article and Find Full Text PDF

A fast and memory efficient three-dimensional full-wave simulator for analyzing electromagnetic (EM) wave propagation in electrically large and realistic mine tunnels/galleries loaded with conductors is proposed. The simulator relies on Muller and combined field surface integral equations (SIEs) to account for scattering from mine walls and conductors, respectively. During the iterative solution of the system of SIEs, the simulator uses a fast multipole method-fast Fourier transform (FMM-FFT) scheme to reduce CPU and memory requirements.

View Article and Find Full Text PDF

Objective: An internally combined volume surface integral equation (ICVSIE) for analyzing electromagnetic (EM) interactions with biological tissue and wide ranging diagnostic, therapeutic, and research applications, is proposed.

Method: The ICVSIE is a system of integral equations in terms of volume and surface equivalent currents in biological tissue subject to fields produced by externally or internally positioned devices. The system is created by using equivalence principles and solved numerically; the resulting current values are used to evaluate scattered and total electric fields, specific absorption rates, and related quantities.

View Article and Find Full Text PDF

A computational framework for uncertainty quantification in transcranial magnetic stimulation (TMS) is presented. The framework leverages high-dimensional model representations (HDMRs), which approximate observables (i.e.

View Article and Find Full Text PDF