Mitochondrial dysfunction plays a critical role in the pathophysiology of Parkinson's disease (PD). The inner mitochondrial membrane (IMM) protein, Mitofilin or Mic60, has been shown to play a key role in controlling and maintaining mitochondrial cristae morphology, and its dysregulation induces cyto-deleterious effects. Here, we investigated the mechanism underlying Mitofilin degradation in dopaminergic neuron death using N27-A cells, and Human Dopamine Neuronal Primary cells treated with PD stressors, Dopamine (DA) or Rotenone (Rot).
View Article and Find Full Text PDFMitochondrial inner membrane protein (Mitofilin or Mic60) is a mitochondria-shaping protein that plays a key role in maintaining mitochondrial cristae structure and remodeling. We recently showed that Mitofilin knockdown in H9c2 myoblasts induces mitochondrial structural damage resulting in mitochondrial dysfunction that is responsible for cell death via apoptosis. Here, we investigated the role of Mitofilin regulation in ischemia/reperfusion (I/R) injury and studied the relationship between Mitofilin and Cyclophilin (CypD), a key regulator of mitochondrial permeability transition pore (mPTP) opening.
View Article and Find Full Text PDFFerroptosis is a distinct iron-dependent mechanism of regulated cell death recognized in cancer and ischemia/reperfusion (I/R) injury of different organs. It has been reported that molecules such as liproxstatin-1 (Lip-1) inhibit ferroptosis and promote cell survival however, the mechanisms underlying this action are not clearly understood. We investigated the role and mechanism of Lip-1 in reducing cell death in the ischemic myocardium.
View Article and Find Full Text PDF