J Chem Inf Model
August 2024
Chemical information disseminated in scientific documents offers an untapped potential for deep learning-assisted insights and breakthroughs. Automated extraction efforts have shifted from resource-intensive manual extraction toward applying machine learning methods to streamline chemical data extraction. While current extraction models and pipelines have ushered in notable efficiency improvements, they often exhibit modest performance, compromising the accuracy of predictive models trained on extracted data.
View Article and Find Full Text PDFThermodynamic properites of molecules are used widely in the study of reactive processes. Such properties are typically measured via experiments or calculated by a variety of computational chemistry methods. In this work, machine learning (ML) models for estimation of standard enthalpy of formation at 298.
View Article and Find Full Text PDF