This study explores the functional characteristics (erosion, corrosion, mechanical damage, and microstructural features) of non-stick cookware made from aluminum alloys. Typically coated with polytetrafluoroethylene (PTFE-Teflon) or ceramic for non-stick properties, we conducted a systematic investigation using corrosion, abrasion, and mechanical tests on six types of cookware from different manufacturers (Manuf-1-6). The cookware was heated at various temperatures [Room temperature (RT), 100, 175, 250, & 350 °C] and times (45 & 120 min).
View Article and Find Full Text PDFThis work aims to study the influence of AlO in CrFeCuMnNi high-entropy alloy matrix composites (HEMCs) on their microstructure, phase changes, and mechanical and wear performances. CrFeCuMnNi-AlO HEMCs were synthesized via mechanical alloying (MA) followed by hot compaction (550 °C at 550 MPa), medium frequency sintering (1200 °C), and hot forging (1000 °C at 50 MPa). The XRD results demonstrate the formation of both FCC and BCC phases in the synthesized powders, which were transformed into major stable FCC and minor ordered B2-BCC phases, as confirmed by HRSEM.
View Article and Find Full Text PDFIn this research work, the nanostructured Fe-Mn (BM0), Fe-Mn-Cu (BM1), Fe-Mn-W (BM2), and Fe-Mn-Co (BM3) biodegradable alloys were successfully synthesized using mechanical alloying. The microstructure of the synthesized alloys was examined using XRD, SEM equipped with EDS, and HRTEM techniques. The results obtained based on these techniques confirmed the development of nanostructured BM0, BM1, BM2, and BM3 alloys and homogenous solid solutions with an even elemental dispersion.
View Article and Find Full Text PDF