This study develops a magnetic composite from pistachio shell biochar (PSBC/CoFe₂O₄) modified with MOF-808 for removing methylene blue (MB) dye and diazinon (DA) pesticide from water. The composite, with a surface area of 151.53 m/g and magnetic saturation of 19.
View Article and Find Full Text PDFThe present research investigates the performance of bentonite clay@biochar@FeO nanocomposite in removing mercury ions (Hg) from aqueous media. The physical and structural properties of bentonite clay@biochar@FeO were determined using Brunauer-Emmett-Teller (BET), vibrating-sample magnetometer (VSM), transmission electron microscopy (TEM), energy-dispersive X-ray (EDX), scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), and Raman analyses. The highest uptake efficiency of Hg was obtained at pH 6, Hg concentration of 10 mg/L, contact time of 80 min, and the composite dose of 1.
View Article and Find Full Text PDFIn the present work, an efficient metal organic framework/graphene oxide (MOF-801/GO) sorbent was fabricated and employed for the detection of organosulfur pesticides (OSPs) in real samples using gas chromatography-flame photometric detection (GC-FPD). The optimal extraction parameters for the suggested solid-phase extraction (SPE) include sorbent amount (60 mg), extraction solvent (acetonitrile) and extraction time (5 min). The linear dynamic ranges and detection limits for organosulfur pesticides (OSPs) samples under above extraction conditions were ranged from 0.
View Article and Find Full Text PDFThe pinnacle of all the efforts of nutrient removal is practically put-down the moment biological cells are lysed, hydrolyzed or digested causing subsequent reappearance of assimilated nitrogen and phosphorus in any biological process. While sludge reduction requires high SRT, the enhanced phosphorus assimilative uptake demands low SRT. A novel reactor configuration for enhanced sludge and phosphorus removal was put to test by incorporating a side stream anaerobic reactor to an Anaerobic-Anoxic-Aerobic (AO) SBR with a pre-anoxic chamber and an influent receiving inlet anaerobic reactor.
View Article and Find Full Text PDFRenewable energy sources are undoubtedly necessary, considering global electricity demand is expected to rise dramatically in the coming years. This research looks at a unique multi-generation plant from the perspectives of exergy, energy, and economics; also, an environmental evaluation is performed to estimate the systems' CO emissions. The unit is made up of a biomass digester and gasifier, a Multi effect Desalination unit, and a supercritical CO (SCO) cycle.
View Article and Find Full Text PDFIntroduction of waste and non-edible oil seeds coupled with green nanotechnology offered a pushover to sustainable and economical biofuels and bio refinery production globally. The current study encompasses the synthesis and application of novel green, highly reactive and recyclable bismuth oxide nanocatalyst derived from Euphorbia royealeana (Falc.) Boiss.
View Article and Find Full Text PDFIn this study, hydroxyapatite@Mn-Fe composite was used as a novel adsorbent to eliminate Nile blue (NB) dye and hexavalent chromium ion (Cr(VI)) from aqueous media. Different analyses such as FTIR, Map, SEM, EDX, BET, and XRD were used to study the characteristics of the composite. The highest sorption efficiencies of Cr(VI) and NB at pH 2 and 10 were 97.
View Article and Find Full Text PDFMembrane technology has been adopted as a prospective and promising alternative to the standard technology used for biodiesel production since the time when it had some limitations. During this research project, the inedible seed oil generating feedstock known as Saussurea heteromalla was put through a biodiesel production process that utilized membrane technology with an effort to increase the yield of methyl ester. The transesterification process was mediated by zirconium oxide nanoparticles that were generated using an aqueous extract of Portulaca oleracea leaf.
View Article and Find Full Text PDF