Publications by authors named "Abdulaziz AlMalik"

Aedes aegypti mosquitoes carrying self-spreading, virus-blocking Wolbachia bacteria are being deployed to suppress dengue transmission. However, there are challenges in applying this technology in extreme environments. We introduced two Wolbachia strains into Ae.

View Article and Find Full Text PDF

AbstractThe movement of individuals through continuous space is typically constrained by dispersal ability and dispersal barriers. A range of approaches have been developed to investigate these. Kindisperse is a new approach that infers recent intergenerational dispersal (σ) from close kin dyads and appears particularly useful for investigating taxa that are difficult to observe individually.

View Article and Find Full Text PDF

At nanoconfined interfaces, a micellar ink of lipids was programmed to transform into various secondary structures such as discs, sheets, or sheet and discs via patterning-mediated self-assembly facilitated by polymer pen lithography. Nanoconfinement with printing force, humidity, temperature, pattern size, and total printing time all governed the intramolecular assembly of lipids and determined their structural shape and size. For example, disc or sheet architectures self-organized to produce cochleates or discotic liquid crystals, respectively.

View Article and Find Full Text PDF

Releases of carrying bacteria are known to suppress arbovirus transmission and reduce the incidence of vector-borne diseases. In planning for releases in the arid environment of Jeddah, Saudi Arabia, we collected entomological data with ovitraps across a 7-month period in four locations. Herein, we show that mosquito presence in basements does not differ from that of non-basement areas of buildings.

View Article and Find Full Text PDF

Oxidative chemical etching of metal nanoparticles (NPs) to produce holey graphene (hG) suffers from the presence of aggregated NPs on the graphene surface triggering heterogeneous etching rates and thereby producing irregular sized holes. To encounter such a challenge, we investigated the use of scanning probe block co-polymer lithography (SPBCL) to fabricate precisely positioned silver nanoparticles (AgNPs) on graphene surfaces with exquisite control over the NP size to prevent their aggregation and consequently produce uniformly distributed holes after oxidative chemical etching. SPBCL experiments were carried out printing an ink suspension consisting of poly(ethylene oxide--2-vinylpyridine) and silver nitrate on a graphene surface in a selected pattern under controlled environmental and instrumental parameters followed by thermal annealing in a gaseous environment to fabricate AgNPs.

View Article and Find Full Text PDF

Robust inflammation-suppressing nanoparticles based on α-acid glycoprotein (AGP)-conjugated hyaluronic acid nanoparticles (AGP-HA NPs) were designed to regulate breast cancer cells' sensitivity to chemotherapy and to suppress tumor metastasis. The successful conjugation between AGP and HA NPs was confirmed using FTIR, zeta potential, and UV-vis spectroscopy. In vitro studies on MCF-7 cells indicated the remarkable ability of AGP-HA NPs in suppressing migratory tumor ability by 79% after 24 h.

View Article and Find Full Text PDF

Local production of pharmaceuticals plays a vital role in maintaining resilience of national healthcare systems, especially when it comes to facilitating access to needed medicines and decreasing exposure to imports and international supply chains. Pharma is a research-intensive industry and the systemic lack of governance and support to R&D activities in this sector, among other host of related issues such as unsupportive regulatory regimes and human resources capacity limitations, is one of the major impediments to the diversifying of locally produced pharmaceuticals portfolio. In this review, an overview of the current pharmaceutical production system in Saudi Arabia, its major challenges, and proposed remedies to address them will be highlighted.

View Article and Find Full Text PDF

Over recent years, tremendous advances in immunotherapy approaches have been observed, generating significant clinical progress. Cancer immunotherapy has been shown, in different types of blood cancers, to improve the overall survival of patients. Immunotherapy treatment of hematopoietic malignancies is a newly growing field that has been accelerating over the past years.

View Article and Find Full Text PDF

Background: Dengue suppression often relies on control of the mosquito vector, Aedes aegypti, through applications of insecticides of which the pyrethroid group has played a dominant role. Insecticide resistance is prevalent in Ae. aegypti around the world, and the resulting reduction of insecticide efficacy is likely to exacerbate the impact of dengue.

View Article and Find Full Text PDF

High-grade serous ovarian cancer (HGSOC) is the most lethal gynecological malignancy among women. Several obstacles impede the early diagnosis and effective treatment options for ovarian cancer (OC) patients, which most importantly include the development of platinum-drug-resistant strains. Currently, extensive efforts are being put into the development of strategies capable of effectively circumventing the physical and biological barriers present in the peritoneal cavity of metastatic OC patients, representing a late stage of gastrointestinal and gynecological cancer with an extremely poor prognosis.

View Article and Find Full Text PDF

The objective of this study was to synthesize and characterize a set of biodegradable block copolymers based on TPGS--poly(ε-caprolactone) (TPGS--PCL) and to assess their self-assembled structures as a nanodelivery system for paclitaxel (PAX). The conjugation of PCL to TPGS was hypothesized to increase the stability and the drug solubilization characteristics of TPGS micelles. TPGS--PCL copolymer with various PCL/TPGS ratios were synthesized via ring opening bulk polymerization of ε-caprolactone using TPGS, with different molecular weights of PEG (1-5 kDa), as initiators and stannous octoate as a catalyst.

View Article and Find Full Text PDF

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,864 COVID-19 cases (713 with severe and 1,151 with mild disease) and 15,033 ancestry-matched population controls across 4 independent COVID-19 biobanks.

View Article and Find Full Text PDF

Unlabelled: Epirubicin (EPI) is an anti-cancerous chemotherapeutic drug that is an effective epimer of doxorubicin with less cardiotoxicity. Although EPI has fewer side effects than its analog, doxorubicin, this study aims to develop EPI nanoparticles as an improved formula of the conventional treatment of EPI in its free form.

Methods: In this study, EPI-loaded polymeric nanoparticles (EPI-NPs) were prepared by the double emulsion method using a biocompatible poly (lactide) poly (ethylene glycol) poly(lactide) (PLA-PEG-PLA) polymer.

View Article and Find Full Text PDF

Repetitive outbreaks and prolonged epidemics represent mortal threats to global health, creating chaos in our globalized world. To date, scientists have been compelled to follow FDA guidelines for conventional clinical trials, which decelerates the release of effective therapies to battle outbreaks and safeguard global health security. Developing multi-purpose platform nanotechnologies to self-target specific organs in response to the disease microenvironment could greatly help to rapidly anticipate and efficiently manage outbreaks.

View Article and Find Full Text PDF

The major impediments to the implementation of cancer immunotherapies are the sustained immune effect and the targeted delivery of these therapeutics, as they have life-threatening adverse effects. In this work, biomimetic metal-organic frameworks [zeolitic imidazolate frameworks (ZIFs)] are used for the controlled delivery of nivolumab (NV), a monoclonal antibody checkpoint inhibitor that was U.S.

View Article and Find Full Text PDF

A recent report found that rare predicted loss-of-function (pLOF) variants across 13 candidate genes in TLR3- and IRF7-dependent type I IFN pathways explain up to 3.5% of severe COVID-19 cases. We performed whole-exome or whole-genome sequencing of 1,934 COVID-19 cases (713 with severe and 1,221 with mild disease) and 15,251 ancestry-matched population controls across four independent COVID-19 biobanks.

View Article and Find Full Text PDF

Metal nanomaterials such as bismuth oxide nanoparticles (BiONPs) have been extensively used in cosmetics, dental materials, pulp capping, and biomedical imaging. There is little knowledge about the health risk of BiONPs in humans, which warrants a thorough toxicity investigation of BiONPs at the cellular level. In this experiment, we investigated the cytotoxic effect of BiONPs on human breast cancer (MCF-7) cells over 24 and 48 h.

View Article and Find Full Text PDF

More than 1050 clinical trials are registered at FDA.gov that explore multipotent mesenchymal stromal cells (MSCs) for nearly every clinical application imaginable, including neurodegenerative and cardiac disorders, perianal fistulas, graft-versus-host disease, COVID-19, and cancer. Several companies have or are in the process of commercializing MSC-based therapies.

View Article and Find Full Text PDF

Purpose: The aim of this work is to optimize a polyethylene glycolated (PEGylated) polymer-lipid hybrid nanoparticulate system for the delivery of anastrozole (ANS) to enhance its biopharmaceutical attributes and overall efficacy.

Methods: ANS loaded PEGylated polymer-lipid hybrid nanoparticles (PLNPs) were prepared by a direct emulsification solvent evaporation method. The physical incorporation of PEG was optimized using variable ratios.

View Article and Find Full Text PDF

Chinese hamster ovary (CHO) cell lines are the most widely used in vitro cells for research and production of recombinant proteins such as rhGH, tPA, and erythropoietin. We aimed to investigate changes in protein profiles after cryopreservation using 2D-DIGE MALDI-TOF MS and network pathway analysis. The proteome changes that occur in CHO cells between freshly prepared cells and cryopreserved cells with and without Me2SO were compared to determine the key proteins and pathways altered during recovery from cryopreservation.

View Article and Find Full Text PDF

Engineered superparamagnetic iron oxide nanoparticles (SPIONs) have been studied extensively for their localized homogeneous heat generation in breast cancer therapy. However, challenges such as aggregation and inability to produce sub-10 nm SPIONs limit their potential in magnetothermal ablation. We report a facile, efficient, and robust in situ method for the synthesis of SPIONs within a poly(ethylene glycol) (PEG) reactor adsorbed onto reduced graphene oxide nanosheets (rGO) via the microwave hydrothermal route.

View Article and Find Full Text PDF

Natural and synthetic membrane active molecules increase the permeability of cell membranes. This can help cells combat multidrug efflux pumps as well as improve signaling and transfection. In this work, thermoresponsive metal-organic complexes (MOCs) have been constructed to transport cell impermeable cargo across the membrane through a pore-aiding assembly.

View Article and Find Full Text PDF

One of the greatest disturbing global health problems is antibiotic-resistant bacterial infections, which have rendered numerous currently used antibiotics ineffective. Thus, the feasibility of chitosan-coated deformable liposomes (C-Lips) containing dicloxacillin (DLX) were evaluated for their efficacy against methicillin-resistant Staphylococcus aureus (MRSA) strains, which are resistant to beta lactam antibiotics. DLX-loaded liposomes (DLX-Lip) were prepared by a lipid film hydration method and then chitosan (CS) coated (C-DLX-Lip) by the electrostatic deposition method.

View Article and Find Full Text PDF

In recent years, nanotechnology has been proven to offer promising biomedical applications for diagnostics and drug delivery, stressing the importance of thoroughly investigating the biocompatibility of potentially translatable nanoparticles (NPs). Herein, we report the cellular responses of uncoated chitosan NPs (CS NPs) and hyaluronic acid-coated chitosan NPs (HA-CS NPs) when introduced into Chinese hamster ovary cells (CHO-K1) in a dose-dependent manner (2.5, 0.

View Article and Find Full Text PDF

Endodontic-periodontal diseases often present great challenges to the clinician in their diagnosis, management, and prognosis. Understanding the disease process through cause-and-effect relationships between the pulp and supporting periodontal tissues with the aid of rational classifications leads to successful treatment outcomes. In this report, we present several treatment modalities in patients with different endodontic-periodontal lesions.

View Article and Find Full Text PDF