Publications by authors named "AbdulMalek Emilia"

Article Synopsis
  • The original publication contained an error in the caption or legend for a specific part of the text.
  • This mistake may have impacted the reader's understanding or interpretation of the content.
  • A correction is necessary to clarify the information presented in the publication.
View Article and Find Full Text PDF
Article Synopsis
  • Lung cancer is a major health issue, and while docetaxel (DTX) is effective, it has serious side effects and low bioavailability.
  • Curcumin (CCM) has been found to enhance DTX's effectiveness and lower toxicity, but both drugs face challenges due to their hydrophobic properties.
  • The study developed inhalable nanoemulsion formulations of DTX and CCM, optimizing their size for better delivery and safety, showing promise for improved treatment of lung diseases.
View Article and Find Full Text PDF

In this study, the ability of the highly scalable metal-organic framework (MOF) CALF-20 to adsorb polar and non-polar gases at low pressure was investigated using grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations. The results from the simulated adsorption isotherms revealed that the highest loading was achieved for SO and Cl, while the lowest loading was found for F molecules. The analysis of interaction energies indicated that SO molecules were able to form the strongest adsorbent-adsorbate interactions and had a tight molecular packing due to their polarity and angular structure.

View Article and Find Full Text PDF

To improve the selective delivery of cisplatin (Cis) to cancer cells, we report and establish the significance of active, targeting drug delivery nanosystems for efficient treatment of lung cancer. Specifically, pH-responsive nano-sized zeolitic imidazolate framework (nZIF-90) was synthesized, post-synthetically modified with an Arg-Gly-Asp peptide motif (RGD@nZIF-90), a known cancer cell homing peptide, and loaded with a large amount of Cis (RGD@Cis⊂nZIF-90). RGD@Cis⊂nZIF-90 was shown to be highly stable under physiological conditions (pH = 7.

View Article and Find Full Text PDF

Nanomedicine-based drug-delivery systems have significant interest in cancer treatment, such as improving the stabilities and biocompatibilities, precise targeting, and reducing toxicities for non-cancerous cells. Herein, this study presents the synthesis and characterisation of carbonate apatite nanoparticles (nCA) and encapsulated afatinib (AFA) as promising drug delivery candidates for lung cancer treatment. nCA/AFA was synthesised and physicochemically characterised, then the encapsulation capacity, drug loading, and cumulative drug release profile were evaluated.

View Article and Find Full Text PDF

Cancer-targeting nanotherapeutics offer promising opportunities for selective delivery of cytotoxic chemotherapeutics to cancer cells. However, the understanding of dissolution behavior and safety profiles of such nanotherapeutics is scarce. In this study, we report the dissolution profile of a cancer-targeting nanotherapeutic, gemcitabine (GEM) encapsulated within RGD-functionalized zeolitic imidazolate framework-8 (GEM⊂RGD@nZIF-8), in dissolution media having pH = 6.

View Article and Find Full Text PDF

A combination of chemical model system with kinetics study was used to investigate the simultaneous formation of heterocyclic amines (HCAs) and polycyclic aromatic hydrocarbons (PAHs). Heating a mixture of phenylalanine, creatinine, and glucose at a commonly practiced household cooking time and temperature successfully differentiated the rate formation (k) of HCAs and PAHs. The good fit suggested that the simultaneous formation was an endothermic bimolecular reaction, and followed the first-order model.

View Article and Find Full Text PDF

Lawesson's reagent (LR) is a well-known classic example of a compound with unique construction and unusual chemical behavior, with a wide range of applications in synthetic organic chemistry. Its main functions were rounded for the thionation of various carbonyl groups in the early days, with exemplary results. However, the role of Lawesson's reagent in synthesis has changed drastically, and now its use can help the chemistry community to understand innovative ideas.

View Article and Find Full Text PDF

Covalent organic frameworks (COFs) have a distinguished surface as they are mostly made by boron, carbon, nitrogen and oxygen. Many applications of COFs rely on polarity, size, charge, stability and hydrophobicity/hydrophilicity of their surface. In this study, two frequently used COFs sheets, COF-1 and covalent triazine-based frameworks (CTF-1), are studied.

View Article and Find Full Text PDF

Quinoxalines, a class of -heterocyclic compounds, are important biological agents, and a significant amount of research activity has been directed towards this class. They have several prominent pharmacological effects like antifungal, antibacterial, antiviral, and antimicrobial. Quinoxaline derivatives have diverse therapeutic uses and have become the crucial component in drugs used to treat cancerous cells, AIDS, plant viruses, schizophrenia, certifying them a great future in medicinal chemistry.

View Article and Find Full Text PDF

The binding characteristics of DNA in deep eutectic solvents (DESs), particularly the binding energy and interaction mechanism, are not widely known. In this study, the binding of tetrabutylammonium bromide (TBABr) based DES of different hydrogen bond donors (HBD), including ethylene glycol (EG), glycerol (Gly), 1,3-propanediol (1,3-PD) and 1,5-pentanediol (1,5-PD), to calf thymus DNA was investigated using fluorescence spectroscopy. It was found that the shorter the alkyl chain length (2 carbons) and higher EG ratios of TBABr:EG (1:5) increased the binding constant (K) between DES and DNA up to 5.

View Article and Find Full Text PDF

Several randomized controlled trials (RCTs) evaluated the afatinib efficacy in patients with advanced non-small cell lung cancer (NSCLC) and recurrent/metastatic head and neck squamous cell carcinoma (R/M HNSCC). This review systemically outlined and meta-analyzed the afatinib efficacy in NSCLC and R/M HNSCC in terms of overall survival (OS) and progression-free survival (PFS) endpoints. Records were retrieved from PubMed, Web of Science, and ScienceDirect from 2011 to 2020.

View Article and Find Full Text PDF

Chemotherapeutic agents used in treating certain cancer types operate in a non-selective manner tending to accumulate in normal, healthy tissue when high doses are used. To mitigate the toxicity effect resulting from this, there is an urgent need to develop active nano delivery systems capable of regulating optimal doses specifically to cancer cells without harming adjacent normal cells. Herein, we report a versatile nanoparticle - zeolitic imidazolate framework-8 (nZIF-8) - that is loaded with a chemotherapeutic agent (gemcitabine; GEM) and surface-functionalized with an autonomous homing system (Arg-Gly-Asp peptide ligand; RGD) via a straightforward, one-pot solvothermal reaction.

View Article and Find Full Text PDF

Gemcitabine (Gem) and cisplatin (Cis) are currently being used for lung cancer treatment, but they are highly toxic in high dosages. This research aimed to develop a niosome formulation containing a low-dosage Gem and Cis (NGC), as an alternative formulation for lung cancer treatment. NGC was prepared using a very simple heating method and was further optimized by D-optimal mixture design.

View Article and Find Full Text PDF

Modification and characterizations of cationic sago starch with 3-chloro-2-hydroxypropyl trimethylammonium chloride (CHPTAC) prepared via etherification reaction was reported in this study. The optimization of cationic sago starch modification was performed by utilizing the combination of response surface methodology and central composite design (RSM/CCD). The effect of each variable and the interaction between the three variables, the concentration of CHPTAC, concentration of the catalyst NaOH, and the reaction times on the degree of substitution (DS) of the product were investigated and modeled.

View Article and Find Full Text PDF
Article Synopsis
  • The combination of docetaxel (DTX) and curcumin (CCM) shows promise for lung cancer treatment but faces challenges like high toxicity and low solubility, limiting its effectiveness.
  • An aerosolized nanoemulsion system was developed to improve the delivery and bioavailability of DTX and CCM for pulmonary use.
  • The study used a D-optimal mixture design to optimize formulations, resulting in formulations that had favorable physicochemical and aerodynamic properties, indicating their potential as drug delivery systems for inhalation therapy.
View Article and Find Full Text PDF

The formation of 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP) was investigated using a kinetic study approach as described by first-order, Arrhenius, and Eyring equations. Chemical model systems with different amino acid precursors (proline, phenylalanine, and glycine) were examined at different times (4, 8, 12, and 16 min) and temperatures (150, 180, 210, 240, and 270 °C). PhIP was detected using high-performance liquid chromatography equipped with fluorescence detector (HPLC-FLD).

View Article and Find Full Text PDF

Background: Although the development of antibiotic and antioxidant manufacturing, the problem of bacterial resistance and food and/or cosmetics oxidation still needs more efforts to design new derivatives which can help to minimize these troubles. Benzimidazo[1,2-c]quinazolines are nitrogen-rich heterocyclic compounds that possess many pharmaceutical properties such as antimicrobial, anticonvulsant, immunoenhancer, and anticancer.

Results: A comparative study between two methods, (microwave-assisted and conventional heating approaches), was performed to synthesise a new quinazoline derivative from 2-(2-aminophenyl)-1H-benzimidazole and octanal to produce 6-heptyl-5,6-dihydrobenzo[4,5]imidazo[1,2-c]quinazoline (OCT).

View Article and Find Full Text PDF

Copper(ii)-peptides are widely used as industrial catalysts such as in the aerobic oxidation of organic molecules, formation of new C-H bonds and in the azide-alkyne cycloaddition reaction. The length of peptides and the effect of adding copper metal into peptides were questioned in their field of applications. Five novel histidine-based tetrapeptides with the sequences HAAD (P1), HAFD (P2), HAVD (P3), AGHD (P4) and PGHD (P5) were synthesized using the solid phase peptide scheme and analysed with high performance liquid chromatography (HPLC) and liquid chromatography-mass spectrometry (LC-MS) with percentage purities as high as 99.

View Article and Find Full Text PDF

Docetaxel has demonstrated extraordinary anticancer effects on lung cancer. However, lack of optimal bioavailability due to poor solubility and high toxicity at its therapeutic dose has hampered the clinical use of this anticancer drug. Development of nanoemulsion formulation along with biocompatible excipients aimed for pulmonary delivery is a potential strategy to deliver this poorly aqueous soluble drug with improved bioavailability and biocompatibility.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is the main risk factor for developing colorectal cancer which is common in patients of all ages. 5-Aminosalicylic acid (5-ASA), structurally related to the salicylates, is highly active in the treatment of IBD with minor side effects. In this study, the synthesis of galactose and fructose esters of 5-ASA was planned to evaluate the role of glycoconjugation on the bioactivity of the parent drug.

View Article and Find Full Text PDF

Despite the fact that intrinsic oxidative stress is inevitable, the extrinsic factor such as ultraviolet radiation enhances reactive oxygen species (ROS) generation resulting in premature skin aging. Nanoemulsion was loaded with fullerene, a strong free radical scavenger, and its efficacy to provide protection and regenerative effect against ROS-induced collagen breakdown in human skin was studied. Stable fullerene nanoemulsions were formulated using high shear homogenization and ultrasonic dispersion technique.

View Article and Find Full Text PDF

This research aims to formulate and to optimize a nanoemulsion-based formulation containing fullerene, an antioxidant, stabilized by a low amount of mixed surfactants using high shear and the ultrasonic emulsification method for transdermal delivery. Process parameters optimization of fullerene nanoemulsions was done by employing response surface methodology, which involved statistical multivariate analysis. Optimization of independent variables was investigated using experimental design based on Box-Behnken design and central composite rotatable design.

View Article and Find Full Text PDF

Fullerene nanoemulsions were formulated in palm kernel oil esters stabilized by low amount of mixed nonionic surfactants. Pseudoternary phase diagrams were established in the colloidal system of PKOEs/Tween 80 : Span 80/water incorporated with fullerene as antioxidant. Preformulation was subjected to combination of high and low energy emulsification methods and the physicochemical characteristics of fullerene nanoemulsions were analyzed using electroacoustic spectrometer.

View Article and Find Full Text PDF

Density, viscosity and ionic conductivity data sets of deep eutectic solvents (DESs) formed by tetrabutylammonium bromide (TBABr) paired with ethlyene glycol, 1,3-propanediol, 1,5-pentanediol and glycerol hydrogen bond donors (HBDs) are reported. The properties of DES were measured at temperatures between 303 K and 333 K for HBD percentages of 66.7% to 90%.

View Article and Find Full Text PDF