Microalgal-bacterial consortium (MBC) constitutes a sustainable and efficient alternative to the conventional activated sludge process for wastewater treatment (WWT). Recently, integrating the MBC process with nitritation (i.e.
View Article and Find Full Text PDFIncreased worldwide consumption of antiviral drugs (AVDs) amid COVID-19 has induced enormous burdens to the existing wastewater treatment systems. Microalgae-based bioremediation is a competitive alternative technology due to its simultaneous nutrient recovery and sustainable biomass production. However, knowledge about the fate, distribution, and interaction of AVDs with microalgae is yet to be determined.
View Article and Find Full Text PDFMicroalgae-based bioremediation presents an alternative to traditional biological wastewater treatment. However, its efficiency is still challenging due to low microalgal activities and growth rate in wastewater. Iron plays an important role in microbial metabolism and is effective to stimulate microbial growth.
View Article and Find Full Text PDFMicroalgal-bacterial consortium process (MBCP) proposed as an alternative to the activated sludge process contains free nitrous acid (FNA). FNA antimicrobial influences on nitrifiers have been demonstrated. However, its influence on microalgae is largely unknown, limiting the system stability of MBCP.
View Article and Find Full Text PDFThe large quantities of non-degradable single use plastics, production and disposal, in addition to increasing amounts of municipal and industrial wastewaters are among the major global issues known today. Biodegradable plastics from biopolymers such as Poly-β-hydroxybutyrates (PHB) produced by microorganisms are potential substitutes for non-degradable petroleum-based plastics. This paper reviews the current status of wastewater-cultivated microbes utilized in PHB production, including the various types of wastewaters suitable for either pure or mixed culture PHB production.
View Article and Find Full Text PDF