Publications by authors named "Abdul Yunus"

The ultimate vaccine against infections caused by Nipah virus should be capable of providing protection at the respiratory tract─the most probable port of entry for this pathogen. Intranasally delivered vaccines, which target nasal-associated lymphoid tissue and induce both systemic and mucosal immunity, are attractive candidates for enabling effective vaccination against this lethal disease. Herein, the water-soluble polyphosphazene delivery vehicle assembles into nanoscale supramolecular constructs with the soluble extracellular portion of the Hendra virus attachment glycoprotein─a promising subunit vaccine antigen against both Nipah and Hendra viruses.

View Article and Find Full Text PDF

Alpha-1-antitrypsin (A1AT) is a multifunctional, clinically important, high value therapeutic glycoprotein that can be used for the treatment of many diseases such as alpha-1-antitrypsin deficiency, diabetes, graft-versus-host-disease, cystic fibrosis and various viral infections. Currently, the only FDA-approved treatment for A1AT disorders is intravenous augmentation therapy with human plasma-derived A1AT. In addition to its limited supply, this approach poses a risk of infection transmission, since it uses therapeutic A1AT harvested from donors.

View Article and Find Full Text PDF
Article Synopsis
  • - The study explores how adding fluorine to a drug delivery system, specifically the immunoadjuvant poly[di(carboxylatophenoxy)phosphazene] (PCPP), can enhance its effectiveness in vaccines, which hasn't been widely researched before.
  • - A new fluorinated version of PCPP (PCPP-F) was created, showing better solubility in acidic conditions and faster breakdown, while still being able to effectively work with an important protein for vaccines.
  • - Tests on PCPP-F revealed that it generates a stronger antibody response against the Hepatitis C virus compared to the non-fluorinated version, highlighting the potential benefits of fluorination in vaccine adjuvant development.
View Article and Find Full Text PDF

Ebolavirus (EBOV) infection in humans is a severe and often fatal disease, which demands effective interventional strategies for its prevention and treatment. The available vaccines, which are authorized under exceptional circumstances, use viral vector platforms and have serious disadvantages, such as difficulties in adapting to new virus variants, reliance on cold chain supply networks, and administration by hypodermic injection. Microneedle (MN) patches, which are made of an array of micron-scale, solid needles that painlessly penetrate into the upper layers of the skin and dissolve to deliver vaccines intradermally, simplify vaccination and can thereby increase vaccine access, especially in resource-constrained or emergency settings.

View Article and Find Full Text PDF

SignificanceHepatitis C virus chronically infects approximately 1% of the world's population, making an effective vaccine for hepatitis C virus a major unmet public health need. The membrane-associated E1E2 envelope glycoprotein has been used in clinical studies as a vaccine candidate. However, limited neutralization breadth and difficulty in producing large amounts of homogeneous membrane-associated E1E2 have hampered efforts to develop an E1E2-based vaccine.

View Article and Find Full Text PDF

Resiquimod or R848 (RSQD) is a Toll-like receptor (TLR) 7/8 agonist which shows promise as vaccine adjuvant due to its potential to promote highly desirable cellular immunity. The development of this small molecule in the field to date has been largely impeded by its rapid clearance and lack of association with vaccine antigens. Here, we report a multimeric TLR 7/8 construct of nano-scale size, which results from a spontaneous self-assembly of RSQD with a water-soluble clinical-stage polymer - poly[di(carboxylatophenoxy)phosphazene] (PCPP).

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major worldwide health burden, and a preventive vaccine is needed for global control or eradication of this virus. A substantial hurdle to an effective HCV vaccine is the high variability of the virus, leading to immune escape. The E1E2 glycoprotein complex contains conserved epitopes and elicits neutralizing antibody responses, making it a primary target for HCV vaccine development.

View Article and Find Full Text PDF

Two well-defined synthetic polyphosphazene immunoadjuvants, PCPP and PCEP, were studied for their ability to potentiate the immune response to the hepatitis C virus (HCV) E2 glycoprotein antigen . We report that PCEP induced significantly higher serum neutralization and HCV-specific IgG titers in mice compared to other adjuvants used in the study: PCPP, Alum, and Addavax. PCEP also shifted the response toward the desirable balanced Th1/Th2 immunity, as evaluated by the antibody isotype ratio (IgG2a/IgG1).

View Article and Find Full Text PDF
Article Synopsis
  • - There's a critical need for effective drugs and vaccines against filovirus infections, including Ebola and Marburg viruses.
  • - FGI-103 is a newly discovered low-molecular-weight compound that shows promising antiviral effects against different strains of these viruses in lab tests and protects mice from lethal doses when administered after infection.
  • - In mice, FGI-103 not only lowers virus levels in vital organs but also delays harmful immune responses, indicating its potential as a viable treatment option for filovirus infections.
View Article and Find Full Text PDF

The treatment of viral diseases remains an intractable problem facing the medical community. Conventional antivirals focus upon selective targeting of virus-encoded targets. However, the plasticity of viral nucleic acid mutation, coupled with the large number of progeny that can emerge from a single infected cells, often conspire to render conventional antivirals ineffective as resistant variants emerge.

View Article and Find Full Text PDF

Influenza infection remains a leading cause of infectious disease-mediated morbidity and mortality. Accumulating evidence indicates that most variants of seasonal and pandemic influenza have developed resistance to conventional therapies. Such information has spawned new interest in identifying novel approaches to target influenza.

View Article and Find Full Text PDF

Human respiratory syncytial virus (RSV) is a major cause of severe lower respiratory tract infection in infants, immunocompromised patients, and the elderly. The RSV fusion (F) protein mediates fusion of the viral envelope with the target cell membrane during virus entry and is a primary target for antiviral drug and vaccine development. The F protein contains two heptad repeat regions, HR1 and HR2.

View Article and Find Full Text PDF

We report herein the identification of a small molecule therapeutic, FGI-106, which displays potent and broad-spectrum inhibition of lethal viral hemorrhagic fevers pathogens, including Ebola, Rift Valley and Dengue Fever viruses, in cell-based assays. Using mouse models of Ebola virus, we further demonstrate that FGI-106 can protect animals from an otherwise lethal infection when used either in a prophylactic or therapeutic setting. A single treatment, administered 1 day after infection, is sufficient to protect animals from lethal Ebola virus challenge.

View Article and Find Full Text PDF

3-O-(3',3'-dimethylsuccinyl) betulinic acid, also termed PA-457 or DSB, is a novel HIV-1 inhibitor that blocks virus maturation by disrupting cleavage of the capsid precursor, CA-SP1. To better define the molecular target for PA-457, we prepared a panel of mutant viruses with point deletions spanning the CA-SP1 cleavage domain and characterized each of these viruses for PA-457 sensitivity. Our results indicate that amino acid residues in the N-terminal half of SP1 serve as determinants of PA-457 activity, while residues in the C-terminal half of SP1 were not involved in compound activity.

View Article and Find Full Text PDF

The complete nucleotide sequences of the attachment glycoprotein (G) genes of three strains of avian metapneumovirus subgroup C (AMPV-C) were determined from the viral genomic and mRNAs. The G gene of AMPV-C was 1798 nt (1015 nt longer than previously reported) and the derived polypeptide had 585 aa. The deduced amino acid sequence of the predicted G protein of AMPV-C strain Colorado (AMPV-CO) showed 21-25 % amino acid identity to the G proteins of human metapneumoviruses, but only 14-16 % amino acid identity to those of other AMPV subgroups.

View Article and Find Full Text PDF

Infectious bursal disease virus (IBDV) causes a highly immunosuppressive disease in chickens. Currently available, live IBDV vaccines can lead to generation of variant viruses. We have developed an alternative vaccine that will not create variant IBDV.

View Article and Find Full Text PDF

We report here the nucleotide and deduced amino acid (aa) sequences of the small hydrophobic (SH) gene of the avian pneumovirus strain Colorado (APV/CO). The SH gene of APV/CO is 628 nucleotides in length from gene-start to gene-end. The longest ORF of the SH gene encoded a protein of 177 aas in length.

View Article and Find Full Text PDF

The interaction of bovine respiratory syncytial virus (BRSV) phosphoprotein (P) with nucleocapsid (N) and large polymerase (L) proteins was investigated using an intracellular BRSV-CAT minigenome replication system. Coimmunoprecipitation assays using P-specific antiserum revealed that the P protein can form complexes with N and L proteins. Deletion mutant analysis of the P protein was performed to identify the regions of P protein that interact with N and L proteins.

View Article and Find Full Text PDF