Background: Medial meniscal extrusion (MME) has been associated with knee osteoarthritis (OA). However, there is no standardized method to measure MME.
Purpose/hypothesis: The purpose of this study was to investigate the relationship between MME and outcome measures related to knee OA and discuss different magnetic resonance imaging (MRI) methods of measuring MME.
Osteoarthritis (OA) is a disabling chronic disease involving the gradual degradation of joint structures causing pain and dysfunction. Magnetic resonance imaging (MRI) has been widely used as a non-invasive tool for assessing OA-related changes. While anatomical MRI is limited to the morphological assessment of the joint structures, quantitative MRI (qMRI) allows for the measurement of biophysical properties of the tissues at the molecular level.
View Article and Find Full Text PDFBackground: Medial meniscus root tears often lead to knee osteoarthritis. The extent of meniscal tissue changes beyond the localized root tear is unknown.
Purpose: To evaluate if 7 Tesla 3D T2*-mapping can detect intrasubstance meniscal degeneration in patients with arthroscopically verified medial meniscus posterior root tears (MMPRTs), and assess if tissue changes extend beyond the immediate site of the posterior root tear detected on surface examination by arthroscopy.
Degeneration of cartilage can be studied non-invasively with quantitative MRI. A promising parameter for detecting early osteoarthritis in articular cartilage is T, which can be tuned via the amplitude of the spin-lock pulse. By measuring T at several spin-lock amplitudes, the dispersion of T is obtained.
View Article and Find Full Text PDFCurrent clinical MRI of patients with juvenile osteochondritis dissecans (JOCD) is limited by the low reproducibility of lesion instability evaluation and inability to predict which lesions will heal after nonoperative treatment and which will later require surgery. The aim of this study is to verify the ability of apparent diffusion coefficient (ADC) to detect differences in lesion microstructure between different JOCD stages, treatment groups, and healthy, unaffected contralateral knees. Pediatric patients with JOCD received quantitative diffusion MRI between January 2016 and September 2020 in this prospective research study.
View Article and Find Full Text PDFBackground: Machine learning models trained with multiparametric quantitative MRIs (qMRIs) have the potential to provide valuable information about the structural composition of articular cartilage.
Purpose: To study the performance and feasibility of machine learning models combined with qMRIs for noninvasive assessment of collagen fiber orientation and proteoglycan content.
Study Type: Retrospective, animal model.
Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that involves the articular-epiphyseal cartilage complex and underlying bone. Clinical disease is often characterized by the presence of radiographically apparent osteochondral flaps and fragments. The existence of early JOCD lesions (osteochondrosis latens [OCL] and osteochondrosis manifesta [OCM]) that precede the development of osteochondral flaps and fragments is also well recognized.
View Article and Find Full Text PDFJuvenile osteochondritis dissecans (JOCD) is an orthopedic joint disorder of children and adolescents that can lead to premature osteoarthritis. Thirteen patients (mean age: 12.3 years, 4 females), 15 JOCD-affected and five contralateral healthy knees, that had a baseline and a follow-up magnetic resonance imaging (MRI) (mean interval of 8.
View Article and Find Full Text PDFChondral lesions lead to degenerative changes in the surrounding cartilage tissue, increasing the risk of developing post-traumatic osteoarthritis (PTOA). This study aimed to investigate the feasibility of quantitative magnetic resonance imaging (qMRI) for evaluation of articular cartilage in PTOA. Articular explants containing surgically induced and repaired chondral lesions were obtained from the stifle joints of seven Shetland ponies (14 samples).
View Article and Find Full Text PDFIn this study, the rabbit model with anterior cruciate ligament transection (ACLT) was used to investigate early degenerative changes in cartilage using multiparametric quantitative magnetic resonance imaging (qMRI). ACLT was surgically induced in the knees of skeletally mature New Zealand White rabbits (n = 14). ACL transected and contralateral knee compartments-medial femur, lateral femur, medial tibia, and lateral tibia-were harvested 2 (n = 8) and 8 weeks (n = 6) postsurgery.
View Article and Find Full Text PDF