Perovskite single crystals have garnered significant interest in photodetector applications due to their exceptional optoelectronic properties. The outstanding crystalline quality of these materials further enhances their potential for efficient charge transport, making them promising candidates for next-generation photodetector devices. This article reports the synthesis of methyl ammonium lead bromide (MAPbBr) perovskite single crystal (SC) via the inverse-temperature crystallization method.
View Article and Find Full Text PDFPerovskite solar cells (PSCs) have demonstrated remarkable photovoltaic performance, positioning themselves as promising devices in the field. Theoretical calculations suggest that copper (Cu) can serve as an effective dopant, potentially occupying interstitial sites in the perovskite structure, thereby reducing the energy barrier and enhancing carrier extraction. Subsequent experimental investigations confirm that adding CuI as an additive to MAPbI-based perovskite cells improves optoelectronic properties and overall device performance.
View Article and Find Full Text PDFJust over a decade, perovskite solar cells (PSCs) have been emerged as a next-generation photovoltaic technology due to their skyrocketing power conversion efficiency (PCE), low cost, and easy manufacturing techniques compared to Si solar cells. Several methods and procedures have been developed to fabricate high-quality perovskite films to improve the scalability and commercialize PSCs. Recently, several printing technologies such as blade-coating, slot-die coating, spray coating, flexographic printing, gravure printing, screen printing, and inkjet printing have been found to be very effective in controlling film formation and improving the PCE of over 21%.
View Article and Find Full Text PDF