Publications by authors named "Abdolreza Farhadian"

The influence of kinetic hydrate inhibitors on the process of natural gas hydrate nucleation was studied using the method of dielectric spectroscopy. The processes of gas hydrate formation and decomposition were monitored using the temperature dependence of the real component of the dielectric constant ε'(T). Analysis of the relaxation times τ and activation energy ΔE of the dielectric relaxation process revealed the inhibitor was involved in hydrogen bonding and the disruption of the local structures of water molecules.

View Article and Find Full Text PDF

Heavy oil and vacuum residue were used to obtain road bitumen BND 50/70 using two different methods of steam distillation at 323-362 °C and by oxidation, a method using packed column at temperature of 211-220 °C. The obtained residues using two methods steam distillation and oxidation are known as non-oxidized bitumen and oxidized bitumen, respectively. The products were evaluated using different standards including GOST 33133-2014, GOST 22245-90, and ASTM D5.

View Article and Find Full Text PDF

Upgrading of heavy oil in supercritical water (SCW) was analyzed by a comprehensive analysis of GC, GC-MS, NMR, and SEM-EDX with the aid of electron paramagnetic resonance (EPR) as a complementary technical analysis. The significant changes in the physical properties and chemical compositions reveal the effectiveness of heavy oil upgrading by SCW. Especially, changes of intensities of conventional EPR signals from free radicals (FRs) and paramagnetic vanadyl complexes (VO) with SCW treatment were noticed, and they were explained, respectively, to understand sulfur removal mechanism (by FR intensity and environment destruction) and metal removal mechanism (by VO complexes' transformation).

View Article and Find Full Text PDF

The feasibility study of utilizing sunflower oil as renewable biomass source to develop highly effective inhibitors for mild steel corrosion (MS) in the 15% HCl medium was done by weight loss, potentiodynamic polarization (PDP), dynamic electrochemical impedance spectroscopy (DEIS), and electrochemical impedance spectroscopy (EIS), supported with energy-dispersive X-ray (EDX), atomic force microscopy (AFM), and field-emission scanning electron microscope (FESEM) techniques. Moreover, a complementary theoretical investigation was carried out to clarify the inhibition mechanism of inhibitors by density functional theory (DFT), density functional based tight-binding (DFTB), and molecular dynamics (MD) simulation approaches. The obtained results confirm that sunflower-oil-based corrosion inhibitor (SFOCI) has a significant anticorrosion property toward the dissolution of MS in 15% HCl solution in the temperature range 20-80 °C.

View Article and Find Full Text PDF

In this work sulfonated chitosan (SCS) was introduced as a promising green kinetic methane hydrate and corrosion inhibitor to overcome the incompatibility problem between inhibitors. Evaluation of hydrate inhibition performance of SCS with high-pressure autoclave and micro-differential scanning calorimeter revealed that hydrate formation was delayed 14.3 ± 0.

View Article and Find Full Text PDF

The forefront horizon of biomedical investigations in recent decades is parcelling-up and delivery of drugs to achieve controlled/targeted release. In this regard, developing green-based delivery systems for a spatiotemporal controlling therapeutic agent have drawn a lot of attention. A facile route based on cyclic carbonate ring-opening reaction has been utilised to synthesise a bio-based polyol-containing urethane bond [polyol-urethane (POU)] as a nanoparticulate drug delivery system of olanzapine in order to enhance its bioavailability.

View Article and Find Full Text PDF

A facile, new and promising technique based on waterborne polymers for designing and synthesizing kinetic hydrate inhibitors (KHIs) has been proposed to prevent methane hydrate formation. This topic is challenging subject in flow assurance problems in gas and oilfields. Proposed technique helps to get KHIs with required number and distance of hydrophilic and hydrophobic groups in molecule and good solubility in water.

View Article and Find Full Text PDF

Presently, modern pharmaceuticals, are almost exclusively derived from the arduous refining of petroleum whose supply is inherently unsustainable. In order to address this issue bio-based materials are increasingly being used for chemical synthesis, particularly in drug delivery systems. Biodegradable and biocompatible hyper-branched polyol (an alcohol containing three or more hydroxyl groups) was synthesized via a facile method through the ring-opening and thiol-ene click reactions at room temperature.

View Article and Find Full Text PDF