In recent years, there has been a notable surge in investments directed towards developing new railway lines and revitalising existing ones, reflecting a global commitment to enhance transportation infrastructure [...
View Article and Find Full Text PDFIn this paper, a novel railway track monitoring approach is proposed that employs acceleration responses measured on an in-service train to detect the loss of stiffness in the track sub-layers. An Artificial Neural Network (ANN) algorithm is developed that works with the energies of the train acceleration responses. A numerical model of a half-car train coupled with a track profile is employed to simulate the train vertical acceleration.
View Article and Find Full Text PDFIn this paper, a field study is carried out to monitor the natural frequencies of Malahide viaduct bridge which is located in the north of Dublin. The bridge includes a series of simply supported spans, two of which collapsed in 2009 and were replaced. The replaced spans are stiffer than most of the others and these differences resulted in higher natural frequencies.
View Article and Find Full Text PDFThis paper proposes a new two-stage machine learning approach for bridge damage detection using the responses measured on a passing vehicle. In the first stage, an artificial neural network (ANN) is trained using the vehicle responses measured from multiple passes (training data set) over a healthy bridge. The vehicle acceleration or Discrete Fourier Transform (DFT) spectrum of the acceleration is used.
View Article and Find Full Text PDFA vibration-based bridge scour detection procedure using a cantilever-based piezoelectric energy harvesting device (EHD) is proposed here. This has an advantage over an accelerometer-based method in that potentially, the requirement for a power source can be negated with the only power requirement being the storage and/or transmission of the data. Ideally, this source of power could be fulfilled by the EHD itself, although much research is currently being done to explore this.
View Article and Find Full Text PDF