Objectives: Acquisition of antibodies to Plasmodium falciparum variant surface antigens (VSA) expressed on infected red blood cells (iRBCs) is associated with naturally acquired immunity to malaria. We have previously shown that antibodies to VSA on iRBCs are associated with protection against parasite growth in the context of controlled human malaria infection (CHMI). This study explored whether antibodies to recombinant antigens derived from PfEMP1 domains were independently associated with protection during CHMI in semi-immune Kenyan adults.
View Article and Find Full Text PDFThe impact of cerebral malaria on the transcriptional profiles of cerebral tissues is difficult to study using noninvasive approaches. We isolated plasma extracellular vesicles (EVs) from patients with cerebral malaria and community controls and sequenced their mRNA content. Deconvolution analysis revealed that EVs from cerebral malaria are enriched in transcripts of brain origin.
View Article and Find Full Text PDFAlthough most children with cerebral malaria fully recover, more than a fifth of the survivors develop post-discharge neurodevelopmental sequelae suggestive of advanced neuronal injury. However, the cerebral molecular processes initiating neurological dysfunction in cerebral malaria are still debatable. In this article, we explore available data and hypothesise that cerebral malaria might be linked to APOE-mediated amyloidosis, one of the pathological processes associated with Alzheimer's disease.
View Article and Find Full Text PDFRecent advances in long read technologies not only enable large consortia to aim to sequence all eukaryotes on Earth, but they also allow individual laboratories to sequence their species of interest with relatively low investment. Long read technologies embody the promise of overcoming scaffolding problems associated with repeats and low complexity sequences, but the number of contigs often far exceeds the number of chromosomes and they may contain many insertion and deletion errors around homopolymer tracts. To overcome these issues, we have implemented the ILRA pipeline to correct long read-based assemblies.
View Article and Find Full Text PDFThe malaria parasite life cycle includes asexual replication in human blood, with a proportion of parasites differentiating to gametocytes required for transmission to mosquitoes. Commitment to differentiate into gametocytes, which is marked by activation of the parasite transcription factor , is known to be influenced by host factors but a comprehensive model remains uncertain. Here, we analyze data from 828 children in Kilifi, Kenya with severe, uncomplicated, and asymptomatic malaria infection over 18 years of falling malaria transmission.
View Article and Find Full Text PDFNatural killer (NK) cells are potent immune effectors that can be activated via antibody-mediated Fc receptor engagement. Using multiparameter flow cytometry, we found that NK cells degranulate and release IFN-γ upon stimulation with antibody-opsonized merozoites. Antibody-dependent NK (Ab-NK) activity was largely strain transcending and enhanced invasion inhibition into erythrocytes.
View Article and Find Full Text PDFThe Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) antigens, which are encoded by a multigene family called var genes, are exported and inserted onto the surface of the infected erythrocytes. PfEMP1 plays a key role in the pathogenesis of severe malaria and are major targets of naturally acquired immunity. Studying the expression pattern of var genes in P.
View Article and Find Full Text PDFBackground: High levels of genetic diversity are common characteristics of Plasmodium falciparum parasite populations in high malaria transmission regions. There has been a decline in malaria transmission intensity over 12 years of surveillance in the community in Kilifi, Kenya. This study sought to investigate whether there was a corresponding reduction in P.
View Article and Find Full Text PDFBackground: variant surface antigens (VSAs) contribute to malaria pathogenesis by mediating cytoadhesion of infected red blood cells to the microvasculature endothelium. In this study, we investigated the association between anti-VSA antibodies and clinical outcome in a controlled human malaria infection (CHMI) study.
Method: We used flow cytometry and ELISA to measure levels of IgG antibodies to VSAs of five heterologous and one homologous parasite isolates, and to two PfEMP1 DBLβ domains in blood samples collected a day before the challenge and 14 days after infection.
In sub-Saharan Africa, children below 5 years bear the greatest burden of severe malaria because they lack naturally acquired immunity that develops following repeated exposure to infections by . Antibodies to the surface of infected erythrocytes (IE) play an important role in this immunity. In children under the age of 6 months, relative protection from severe malaria is observed and this is thought to be partly due to trans-placental acquired protective maternal antibodies.
View Article and Find Full Text PDFAntimalarial drug resistance is a substantial impediment to malaria control. The spread of resistance has been described using genetic markers which are important epidemiological tools. We carried out a temporal analysis of changes in allele frequencies of 12 drug resistance markers over two decades of changing antimalarial drug policy in Kenya.
View Article and Find Full Text PDFNaturally acquired clinical immunity to Plasmodium falciparum is partly mediated by antibodies directed at parasite-derived antigens expressed on the surface of red blood cells which mediate disease and are extremely diverse. Unlike children, adults recognize a broad range of variant surface antigens (VSAs) and are protected from severe disease. Though crucial to the design and feasibility of an effective malaria vaccine, it is not yet known whether immunity arises through cumulative exposure to each of many antigenic types, cross-reactivity between antigenic types, or some other mechanism.
View Article and Find Full Text PDFBackground: The PfEMP1 family of Plasmodium falciparum antigens play a key role in pathogenesis of severe malaria through their insertion into the surface of parasite infected erythrocytes, and adhesion to host cells. Previous studies have suggested that parasites expressing PfEMP1 subclasses group A and DC8, associated with severe malaria, may have a growth advantage in immunologically naïve individuals. However, this idea has not been tested in longitudinal studies.
View Article and Find Full Text PDFPlasmodium falciparum erythrocyte membrane protein 1 (PfEMP1), expressed on P. falciparum-infected erythrocytes, is a major family of clonally variant targets of naturally acquired immunity to malaria. Previous studies have demonstrated that in areas where malaria is endemic, antibodies to infected erythrocytes from children with severe malaria tend to be more seroprevalent than antibodies to infected erythrocytes from children with nonsevere malaria.
View Article and Find Full Text PDFParasite proteins called PfEMP1 that are inserted on the surface of infected erythrocytes, play a key role in the severe pathology associated with infection by the Plasmodium falciparum malaria parasite. These proteins mediate binding of infected cells to the endothelial lining of blood vessels as a strategy to avoid clearance by the spleen and are major targets of naturally acquired immunity. PfEMP1 is encoded by a large multi-gene family called var.
View Article and Find Full Text PDFThe Plasmodium falciparum erythrocyte membrane protein 1 antigens that are inserted onto the surface of P. falciparum infected erythrocytes play a key role both in the pathology of severe malaria and as targets of naturally acquired immunity. They might be considered unlikely vaccine targets because they are extremely diverse.
View Article and Find Full Text PDFRetinopathy provides a window into the underlying pathology of life-threatening malarial coma ("cerebral malaria"), allowing differentiation between 1) coma caused by sequestration of Plasmodium falciparum-infected erythrocytes in the brain and 2) coma with other underlying causes. Parasite sequestration in the brain is mediated by PfEMP1; a diverse parasite antigen that is inserted into the surface of infected erythrocytes and adheres to various host receptors. PfEMP1 sub-groups called "DC8" and "DC13" have been proposed to cause brain pathology through interactions with endothelial protein C receptor.
View Article and Find Full Text PDFThe level of plasma soluble ICAM-1 (sICAM-1) has been associated with the pathogenesis of several diseases. Previously, a commercial antibody was reported not to recognize an ICAM-1 allele known as ICAM-1kilifi prevalent among African populations. However, that study was based on 19 samples from African Americans of whom 13 had the wild type allele, five heterozygotes and one homozygote.
View Article and Find Full Text PDFBackground: Plasmodium falciparum erythrocyte membrane protein 1(PfEMP1) is a family of variant surface antigens (VSA) that mediate the adhesion of parasite infected erythrocytes to capillary endothelial cells within host tissues. Opinion is divided over the role of PfEMP1 in the widespread endothelial activation associated with severe malaria. In a previous study we found evidence for differential associations between defined VSA subsets and specific syndromes of severe malaria: group A-like PfEMP1 expression and the "rosetting" phenotype were associated with impaired consciousness and respiratory distress, respectively.
View Article and Find Full Text PDFThe Plasmodium falciparum genome is rich in regions of low amino acid complexity which evolve with few constraints on size. To explore the extent of diversity in these loci, we sequenced repeat regions in pfmdr1, pfmdr5, pfmdr6, pfmrp2, and the antigenic locus pfmsp8 in laboratory and cultured-adapted clinical isolates. We further assessed associations between the repeats and parasite in vitro responses to 7 antimalarials to determine possible adaptive roles of these repeats in drug tolerance.
View Article and Find Full Text PDFThorough bioinformatic and phylogenetic analyses of Plasmodium falciparum tyrosine kinase-like kinase (TKL) sequences revealed a clear evolutionary relationship of PF3D7_1121300 (thereafter called PfTKL2) to the IL-1 receptor-associated kinase (IRAK)/receptor-like kinase (RLK)/Pelle protein family. We identified a novel conserved motif that is unique to this family, as well as an insertion whose length allows distribution of its members into two distinct subfamilies, in a way that matches exactly the dichotomy between 'Tube/Tube-like kinases' (TTLKs) and 'Pelle-like kinases' (PLKs) distinguished previously on the basis of features in accessory domains. The PfTKL2 protein is expressed ubiquitously in asexual blood stages and in gametocytes, and the recombinant enzyme displays kinase activity in vitro.
View Article and Find Full Text PDFPlasmodium merozoites attach to and invade red blood cells (RBCs) during the erythrocytic cycle. The invasion process requires recognition of RBC surface receptors by proteins of the Plasmodium Duffy binding like erythrocyte binding like (DBL-EBP) family. Clones and isolates of Plasmodium falciparum have varying abilities to utilize different RBC receptors, and multiple distinct pathways so far identified depend on glycophorins A, B, C, and as yet unidentified receptors.
View Article and Find Full Text PDF