We describe the development and validation of a new instrument, the Classroom Discourse Observation Protocol (CDOP), which quantifies teacher discourse moves (TDMs) from observational data in undergraduate STEM classrooms. TDMs can be conceptualized as epistemic tools that can mediate classroom discussions. Through an inductive-deductive coding process, we identified commonly occurring TDMs among a group of biology instructors (n = 13, 37 class session) teaching in Active Learning Environments.
View Article and Find Full Text PDFBackground: Cooperative and inquiry-based pedagogies provide a context for classroom discourse in which students develop joint understanding of subject matter knowledge. Using the symbolic interactionist perspective that meaning is constructed as individuals interact with one another, we examined how student groups enrolled in an undergraduate general chemistry course developed sociochemical norms that influenced individual student understanding of chemical concepts. Sociochemical norms refer to the normative aspects of classroom microculture that regulate discourse on what counts as a table chemical justification and explanation.
View Article and Find Full Text PDFWhile the inquiry approach to science teaching has been widely recommended as an epistemic mechanism to promote deep content understanding, there is also increased expectation that process and other transferable skills should be integral part of science pedagogy. To test the hypothesis that coupling process skills to content teaching impacts academic success measures, we meta-analyzed twenty-one studies (n = 21) involving 7876 students that compared Process Oriented Guided Inquiry Learning (POGIL), a pedagogy that provides opportunities for improving process skills during content learning through guided-inquiry activities, to standard lecture conditions. Based on conventional measures of class performance, POGIL had a small effect on achievement outcomes (effect size = 0.
View Article and Find Full Text PDFCBE Life Sci Educ
February 2017
Educational research often requires mixing different research methodologies to strengthen findings, better contextualize or explain results, or minimize the weaknesses of a single method. This article provides practical guidelines on how to conduct such research in biology education, with a focus on mixed-methods research (MMR) that uses both quantitative and qualitative inquiries. Specifically, the paper provides an overview of mixed-methods design typologies most relevant in biology education research.
View Article and Find Full Text PDF