Cytarabine, daunorubicin, and etoposide (ADE) have been the standard backbone of induction chemotherapy regimens for acute myeloid leukemia (AML) patients for over five decades. However, chemoresistance is still a major concern, and a significant proportion of AML becomes resistant to ADE treatment leading to relapse and poor survival. Therefore, there is a significant need to identify mechanisms mediating drug resistance to overcome chemoresistance.
View Article and Find Full Text PDFMetal-based drugs, such as cisplatin and auranofin, are used for the treatment of cancer and rheumatoid arthritis, respectively. Auranofin and other gold-derived compounds have been shown to possess anticancer, anti-inflammatory, antimicrobial, and antiparasitic activity in preclinical and clinical trials. Unlike platinum agents which are known to target DNA, the target of gold is not well elucidated.
View Article and Find Full Text PDFEtoposide is used to treat a wide range of malignant cancers, including acute myeloid leukemia (AML) in children. Despite the use of intensive chemotherapeutic regimens containing etoposide, a significant proportion of pediatric patients with AML become resistant to treatment and relapse, leading to poor survival. This poses a pressing clinical challenge to identify mechanisms underlying drug resistance to enable effective pharmacologic targeting.
View Article and Find Full Text PDFBackground: The COVID-19 pandemic has resulted in 275 million infections and 5.4 million deaths as of December 2021. While effective vaccines are being administered globally, there is still a great need for antiviral therapies as antigenically novel SARS-CoV-2 variants continue to emerge across the globe.
View Article and Find Full Text PDFPancreatic cancer is the third most common cause of cancer-related deaths in the United States. Although gemcitabine is the standard of care for most patients with pancreatic cancer, its efficacy is limited by the development of resistance. This resistance may be attributable to the evasion of apoptosis caused by the overexpression of BCL-2 family antiapoptotic proteins.
View Article and Find Full Text PDFOrganochlorine pesticides (OCPs) are persistent pollutants linked to diverse adverse health outcomes. Environmental exposure to OCPs has been suggested to negatively impact the immune system but their effects on cellular antiviral responses remain unknown. Transcriptomic analysis of N27 rat dopaminergic neuronal cells unexpectedly detected high level expression of genes in the interferon (IFN)-related antiviral response pathways including the IFN-induced protein with tetratricopeptide repeats 1 and 2 (Ifit1/2) and the MX Dynamin Like GTPases Mx1 and Mx2.
View Article and Find Full Text PDFFormaldehyde (FA), a ubiquitous environmental pollutant, is classified as a Group I human carcinogen by the International Agency for Research on Cancer. Previously, we reported that FA induced hematotoxicity and chromosomal aneuploidy in exposed workers and toxicity in bone marrow and hematopoietic stem cells of experimental animals. Using functional toxicogenomic profiling in yeast, we identified genes and cellular processes modulating eukaryotic FA cytotoxicity.
View Article and Find Full Text PDFTransferrin-bound iron (TBI), the physiological circulating iron form, is acquired by cells through the transferrin receptor (TfR1) by endocytosis. In erythroid cells, most of the acquired iron is incorporated into heme in the mitochondria. Cellular trafficking of heme is indispensable for erythropoiesis and many other essential biological processes.
View Article and Find Full Text PDFOrganochlorine pesticides, once widely used, are extremely persistent and bio-accumulative in the environment. Epidemiological studies have implicated that environmental exposure to organochlorine pesticides including dieldrin is a risk factor for the development of Parkinson's disease. However, the pertinent mechanisms of action remain poorly understood.
View Article and Find Full Text PDFThe 78-kDa glucose-regulated protein (GRP78), an endoplasmic reticulum (ER) chaperone, is a master regulator of the ER stress. A number of studies revealed that high levels of GRP78 protein in cancer cells confer multidrug resistance (MDR) to therapeutic treatment. Therefore, drug candidate that reduces GRP78 may represent a novel approach to eliminate MDR cancer cells.
View Article and Find Full Text PDFFibrous particles interact with cells and organisms in complex ways that can lead to cellular dysfunction, cell death, inflammation, and disease. The development of conductive transparent networks (CTNs) composed of metallic silver nanowires (AgNWs) for flexible touchscreen displays raises new possibilities for the intimate contact between novel fibers and human skin. Here, we report that a material property, nanowire-bending stiffness that is a function of diameter, controls the cytotoxicity of AgNWs to nonimmune cells from humans, mice, and fish without deterioration of critical CTN performance parameters: electrical conductivity and optical transparency.
View Article and Find Full Text PDFAcetaldehyde, a metabolite of ethanol, is a cellular toxicant and a human carcinogen. A genome-wide CRISPR-based loss-of-function screen in erythroleukemic K562 cells revealed candidate genetic contributors affecting acetaldehyde cytotoxicity. Secondary screening exposing cells to a lower acetaldehyde dose simultaneously validated multiple candidate genes whose loss results in increased sensitivity to acetaldehyde.
View Article and Find Full Text PDFPurpose: Understanding how differentiation, microenvironment, and hormonal milieu influence human breast cell susceptibility to malignant transformation will require the use of physiologically relevant in vitro systems. We sought to develop a 3D culture model that enables the propagation of normal estrogen receptor alpha (ER) + cells.
Methods: We tested soluble factors and protocols for the ability to maintain progenitor and ER + cells in cultures established from primary cells.
Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs.
View Article and Find Full Text PDFBackground: Xenoestrogens are synthetic compounds that mimic endogenous estrogens by binding to and activating estrogen receptors. Exposure to estrogens and to some xenoestrogens has been associated with cell proliferation and an increased risk of breast cancer. Despite evidence of estrogenicity, parabens are among the most widely used xenoestrogens in cosmetics and personal-care products and are generally considered safe.
View Article and Find Full Text PDFUnlabelled: A highly versatile nanoplatform that couples mesoporous silica nanoparticles (MSNs) with an aerosol technology to achieve direct nanoscale delivery to the respiratory tract is described. This novel method can deposit MSN nanoparticles throughout the entire respiratory tract, including nasal, tracheobronchial and pulmonary regions using a water-based aerosol. This delivery method was successfully tested in mice by inhalation.
View Article and Find Full Text PDFNanowires (NWs), high-aspect-ratio nanomaterials, are increasingly used in technological materials and consumer products and may have toxicological characteristics distinct from nanoparticles. We carried out a comprehensive evaluation of the physicochemical stability of four silver nanowires (AgNWs) of two sizes and coatings and their toxicity to Daphnia magna . Inorganic aluminum-doped silica coatings were less effective than organic poly(vinyl pyrrolidone) coatings at preventing silver oxidation or Ag(+) release and underwent a significant morphological transformation within 1 h following addition to low ionic strength Daphnia growth media.
View Article and Find Full Text PDFBackground: With the emergence of a completed genome sequence of the freshwater crustacean Daphnia pulex, construction of genomic-scale sequence databases for additional crustacean sequences are important for comparative genomics and annotation. Porcelain crabs, genus Petrolisthes, have been powerful crustacean models for environmental and evolutionary physiology with respect to thermal adaptation and understanding responses of marine organisms to climate change. Here, we present a large-scale EST sequencing and cDNA microarray database project for the porcelain crab Petrolisthes cinctipes.
View Article and Find Full Text PDFCentral predictions of climate warming models include increased climate variability and increased severity of heat waves. Physiological acclimatization in populations across large-scale ecological gradients in habitat temperature fluctuation is an important factor to consider in detecting responses to climate change related increases in thermal fluctuation. We measured in vivo cardiac thermal maxima and used microarrays to profile transcriptome heat and cold stress responses in cardiac tissue of intertidal zone porcelain crabs across biogeographic and seasonal gradients in habitat temperature fluctuation.
View Article and Find Full Text PDFSelenium (Se) phytovolatilization, the process by which plants metabolize various inorganic or organic species of Se (e.g. selenate, selenite, and Se-methionine [Met]) into gaseous Se forms (e.
View Article and Find Full Text PDF