Publications by authors named "Abderrahim Ramdane"

The proof-of-concept of the exploitation of Coherent Perfect Absorption (CPA) in electrically-injected distributed-feedback laser sources is reported. Capitalizing on the essence of CPA as "light extinction by light", an integrated laser-modulator scheme emerges. The key ingredient compared to conventional single-frequency laser diodes is a careful periodic in-phase modulation of both real and imaginary parts of the complex grating index profile that enables both single-frequency operation and 40 dB line purity at the Bragg frequency.

View Article and Find Full Text PDF

Laser-based light detection and ranging (LiDAR) is key to many applications in science and industry. For many use cases, compactness and power efficiency are key, especially in high-volume applications such as industrial sensing, navigation of autonomous objects, or digitization of 3D scenes using hand-held devices. In this context, comb-based ranging systems are of particular interest, combining high accuracy with high measurement speed.

View Article and Find Full Text PDF

The continued evolution of high capacity data center interconnects (DCI) requires scalable transceiver design. The Gigabit Ethernet (GbE) family of standards targets cost-effective and increased capacity transmission through the use of coarse wavelength division multiplexing (CWDM) and direct detection. Moving beyond near-term GbE deployments, multi-wavelength optical sources will be required to enable spectrally efficient WDM transmission, as well as small form-factor transceiver design.

View Article and Find Full Text PDF

Chip-scale frequency comb generators lend themselves as multi-wavelength light sources in highly scalable wavelength-division multiplexing (WDM) transmitters and coherent receivers. Among different options, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out due to their compactness and simple operation along with the ability to provide a flat and broadband comb spectrum with dozens of equally spaced optical tones. However, the devices suffer from strong phase noise, which impairs transmission performance of coherent links, in particular when higher-order modulation formats are to be used.

View Article and Find Full Text PDF

Quantum-dash (QD) mode-locked laser diodes (MLLD) lend themselves as chip-scale frequency comb generators for highly scalable wavelength-division multiplexing (WDM) links in future data-center, campus-area, or metropolitan networks. Driven by a simple DC current, the devices generate flat broadband frequency combs, containing tens of equidistant optical tones with line spacings of tens of GHz. Here we show that QD-MLLDs can not only be used as multi-wavelength light sources at a WDM transmitter, but also as multi-wavelength local oscillators (LO) for parallel coherent reception.

View Article and Find Full Text PDF

Chip-scale frequency comb generators have the potential to become key building blocks of compact wavelength-division multiplexing (WDM) transceivers in future metropolitan or campus-area networks. Among the various comb generator concepts, quantum-dash (QD) mode-locked laser diodes (MLLD) stand out as a particularly promising option, combining small footprint with simple operation by a DC current and offering flat broadband comb spectra. However, the data transmission performance achieved with QD-MLLD was so far limited by strong phase noise of the individual comb tones, restricting experiments to rather simple modulation formats such as quadrature phase shift keying (QPSK) or requiring hardware-based compensation schemes.

View Article and Find Full Text PDF

Quantum dash (Q-Dash) passively mode-locked lasers (PMLLs) exhibit significant low frequency relative intensity noise (RIN), due to the high mode partition noise (MPN), which prevents the implementation of multilevel amplitude modulation formats such as PAM4. The authors demonstrate low frequency RIN mitigation by employing 8B/10B and Manchester encoding with PAM4 modulation format. These encoding techniques reduce the overlap between the modulation spectral content and the low-frequency RIN of the Q-dash devices, at the expense of increased overhead.

View Article and Find Full Text PDF

The optical outputs of single-section quantum-dash and quantum-dot mode-locked lasers (MLLs) are well known to exhibit strong group velocity dispersion. Based on careful measurements of the spectral phase of the pulses from these MLLs, we confirm that the difference in group delay between the modes at either end of the MLL spectrum equals the cavity round-trip time. This observation allows us to deduce an empirical formula relating the accumulated dispersion of the output pulse to the spectral extent and free-spectral range of the MLL.

View Article and Find Full Text PDF
Article Synopsis
  • The study involves using four-wave mixing to assess the correlation between different frequencies (comb tones) produced by a quantum-dash mode-locked laser.
  • Both passive and active locking conditions of the laser are examined to understand how they affect the correlation measurements.
  • The research also focuses on evaluating the uncertainty involved in measuring the correlation coefficient with the proposed approach.
View Article and Find Full Text PDF

Successful use of a single-section quantum well (QW) passively mode-locked laser (MLL) as a comb source for optical interconnects is demonstrated for the first time. Sixteen comb lines spaced by 37.6 GHz are modulated using 25 Gb/s compatible single sideband orthogonal frequency division multiplexed (SSB-OFDM) signals and transmitted over 50 km of standard single-mode fiber with bit error ratio below the 7% forward error correction limit.

View Article and Find Full Text PDF

We report on low-temperature cross-sectional scanning tunneling microscopy and spectroscopy on InAs(P)/InGaAsP/InP(001) quantum dashes, embedded in a diode-laser structure. The laser active region consists of nine InAs(P) quantum dash layers separated by the InGaAsP quaternary alloy barriers. The effect of the p-i-n junction built-in potential on the band structure has been evidenced and quantified on large-scale tunneling spectroscopic measurements across the whole active region.

View Article and Find Full Text PDF

We present the first demonstration of an InAs/InP Quantum Dash based single-section frequency comb generator designed for use in photonic integrated circuits (PICs). The laser cavity is closed using a specifically designed Bragg reflector without compromising the mode-locking performance of the self pulsating laser. This enables the integration of single-section mode-locked laser in photonic integrated circuits as on-chip frequency comb generators.

View Article and Find Full Text PDF

The mode coherence of adjacent and non-adjacent spectral modes of a passively mode locked quantum dash (QDash) semiconductor laser are deduced through radio frequency beat-tone linewidth measurements. A wavelength conversion scheme that uses degenerate four wave mixing in a semiconductor optical amplifier is proposed which considerably extends the mode spacing beyond the limit imposed by conventional fast-photodetection and electrical spectrum analysis of around 100 GHz. Using this scheme, the mode coherence of the QDash laser was measured out to the thirty-first harmonic, or a mode separation of 1.

View Article and Find Full Text PDF

An analysis of the passively mode locked regime in semiconductor lasers is presented, leading to an explicit expression relating the timing jitter diffusion constant to the optical linewidths in these devices. Experimental results for single section quantum-dash based lasers validating the theoretical analysis are presented for the first time. Timing jitter of mode locked lasers at rates of up to 130 GHz has been experimentally estimated from the optical spectra without requiring fast photodetection.

View Article and Find Full Text PDF

Mode locking features of single section quantum dash based lasers are investigated. Particular interest is given to the static spectral phase profile determining the shape of the mode locked pulses. The phase profile dependence on cavity length and injection current is experimentally evaluated, demonstrating the possibility of efficiently using the wide spectral bandwidth exhibited by these quantum dash structures for the generation of high peak power sub-picosecond pulses with low radio frequency linewidths.

View Article and Find Full Text PDF