Publications by authors named "Abdenour Hadid"

Article Synopsis
  • COVID-19 analysis through medical imaging has become crucial due to the pandemic, using tools like CT scans to assess infection severity and progression.
  • Segmentation of infections in CT scans is labor-intensive for radiologists, prompting the development of a framework that treats infection estimation as a regression problem.
  • The Per-COVID-19 challenge aimed to evaluate deep learning methods for estimating COVID-19 infection percentages from CT scans, addressing issues like noisy data and the complexity of infections, while sharing insights on competition data and evaluation metrics.
View Article and Find Full Text PDF

This paper presents a novel vehicular environment identification approach based on deep learning. It consists of exploiting the vehicular wireless channel characteristics in the form of Channel State Information (CSI) in the receiver side of a connected vehicle in order to identify the environment type in which the vehicle is driving, without any need to implement specific sensors such as cameras or radars. We consider environment identification as a classification problem, and propose a new convolutional neural network (CNN) architecture to deal with it.

View Article and Find Full Text PDF

Currently, face recognition technology is the most widely used method for verifying an individual's identity. Nevertheless, it has increased in popularity, raising concerns about face presentation attacks, in which a photo or video of an authorized person's face is used to obtain access to services. Based on a combination of background subtraction (BS) and convolutional neural network(s) (CNN), as well as an ensemble of classifiers, we propose an efficient and more robust face presentation attack detection algorithm.

View Article and Find Full Text PDF

For self-driving systems or autonomous vehicles (AVs), accurate lane-level localization is a important for performing complex driving maneuvers. Classical GNSS-based methods are usually not accurate enough to have lane-level localization to support the AV's maneuvers. LiDAR-based localization can provide accurate localization.

View Article and Find Full Text PDF

COVID-19 infection recognition is a very important step in the fight against the COVID-19 pandemic. In fact, many methods have been used to recognize COVID-19 infection including Reverse Transcription Polymerase Chain Reaction (RT-PCR), X-ray scan, and Computed Tomography scan (CT- scan). In addition to the recognition of the COVID-19 infection, CT scans can provide more important information about the evolution of this disease and its severity.

View Article and Find Full Text PDF

In recent years, automatic tissue phenotyping has attracted increasing interest in the Digital Pathology (DP) field. For Colorectal Cancer (CRC), tissue phenotyping can diagnose the cancer and differentiate between different cancer grades. The development of Whole Slide Images (WSIs) has provided the required data for creating automatic tissue phenotyping systems.

View Article and Find Full Text PDF

The recognition of COVID-19 infection from X-ray images is an emerging field in the learning and computer vision community. Despite the great efforts that have been made in this field since the appearance of COVID-19 (2019), the field still suffers from two drawbacks. First, the number of available X-ray scans labeled as COVID-19-infected is relatively small.

View Article and Find Full Text PDF

Automatic medical diagnosis is an emerging center of interest in computer vision as it provides unobtrusive objective information on a patient's condition. The face, as a mirror of health status, can reveal symptomatic indications of specific diseases. Thus, the detection of facial abnormalities or atypical features is at upmost importance when it comes to medical diagnostics.

View Article and Find Full Text PDF

The Kinship Face in the Wild data sets, recently published in TPAMI, are currently used as a benchmark for the evaluation of kinship verification algorithms. We recommend that these data sets are no longer used in kinship verification research unless there is a compelling reason that takes into account the nature of the images. We note that most of the image kinship pairs are cropped from the same photographs.

View Article and Find Full Text PDF

While there has been an enormous amount of research on face recognition under pose/illumination/expression changes and image degradations, problems caused by occlusions attracted relatively less attention. Facial occlusions, due, for example, to sunglasses, hat/cap, scarf, and beard, can significantly deteriorate performances of face recognition systems in uncontrolled environments such as video surveillance. The goal of this paper is to explore face recognition in the presence of partial occlusions, with emphasis on real-world scenarios (e.

View Article and Find Full Text PDF

This paper proposes a novel method for recognizing faces degraded by blur using deblurring of facial images. The main issue is how to infer a Point Spread Function (PSF) representing the process of blur on faces. Inferring a PSF from a single facial image is an ill-posed problem.

View Article and Find Full Text PDF

This paper presents a novel and efficient facial image representation based on local binary pattern (LBP) texture features. The face image is divided into several regions from which the LBP feature distributions are extracted and concatenated into an enhanced feature vector to be used as a face descriptor. The performance of the proposed method is assessed in the face recognition problem under different challenges.

View Article and Find Full Text PDF