An amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFVarious mechanisms involved in schizophrenia pathophysiology, such as dopamine dysregulation, glutamate/NMDA receptor dysfunction, neuroinflammation or redox imbalance, all appear to converge towards an oxidative stress "hub" affecting parvalbumine interneurones (PVI) and their perineuronal nets (PNN) (Lancet Psychiatry. 2015;2:258-70); (Nat Rev Neurosci. 2016;17:125-34).
View Article and Find Full Text PDFUnlabelled: Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord.
View Article and Find Full Text PDFPreclinical and clinical data stress the importance of pharmacologically-controlling glial cell line-derived neurotrophic factor (GDNF) intracerebral administration to treat PD. The main challenge is finding a combination of a genetic switch and a drug which, when administered at a clinically-approved dose, reaches the brain in sufficient amounts to induce a therapeutic effect. We describe a highly-sensitive doxycycline-inducible adeno-associated virus (AAV) vector.
View Article and Find Full Text PDFNeurobiol Dis
April 2016
The dopamine (DA) transporter (DAT) is a plasma membrane glycoprotein expressed in dopaminergic (DA-) cells that takes back DA into presynaptic neurons after its release. DAT dysfunction has been involved in different neuro-psychiatric disorders including Parkinson's disease (PD). On the other hand, numerous studies support that the glial cell line-derived neurotrophic factor (GDNF) has a protective effect on DA-cells.
View Article and Find Full Text PDFWe have previously demonstrated disease-dependent gene delivery in the brain using an AAV vector responding to NFκB activation as a probe for inflammatory responses. This vector, injected focally in the parenchyma prior to a systemic kainic acid (KA) injection mediated inducible transgene expression in the hippocampus but not in the cerebellum, regions, respectively, known to be affected or not by the pathology. However, such a focal approach relies on previous knowledge of the model parameters and does not allow to predict the whole brain response to the disease.
View Article and Find Full Text PDFAbstract Gene therapy approaches using recombinant adeno-associated virus serotype 2 (rAAV2) and serotype 8 (rAAV8) have achieved significant clinical benefits. The generation of rAAV Reference Standard Materials (RSM) is key to providing points of reference for particle titer, vector genome titer, and infectious titer for gene transfer vectors. Following the example of the rAAV2RSM, here we have generated and characterized a novel RSM based on rAAV serotype 8.
View Article and Find Full Text PDFStimulation of resident cells by NF-κB activating cytokines is a central element of inflammatory and degenerative disorders of the central nervous system (CNS). This disease-mediated NF-κB activation could be used to drive transgene expression selectively in affected cells, using adeno-associated virus (AAV)-mediated gene transfer. We have constructed a series of AAV vectors expressing GFP under the control of different promoters including NF-κB -responsive elements.
View Article and Find Full Text PDFRecombinant adeno-associated virus (rAAV) are effective gene delivery vehicles that can mediate long-lasting transgene expression. However, tight regulation and tissue-specific transgene expression is required for certain therapeutic applications. For regulatable expression from the liver we designed a hepatospecific bidirectional and autoregulatory tetracycline (Tet)-On system (Tet(bidir)Alb) flanked by AAV inverted terminal repeats (ITRs).
View Article and Find Full Text PDFA recombinant adeno-associated virus serotype 2 Reference Standard Material (rAAV2 RSM) has been produced and characterized with the purpose of providing a reference standard for particle titer, vector genome titer, and infectious titer for AAV2 gene transfer vectors. Production and purification of the reference material were carried out by helper virus-free transient transfection and chromatographic purification. The purified bulk material was vialed, confirmed negative for microbial contamination, and then distributed for characterization along with standard assay protocols and assay reagents to 16 laboratories worldwide.
View Article and Find Full Text PDFThe biodistribution of transgene expression in the CNS after localized stereotaxic vector delivery is an important issue for the safety of gene therapy for neurological diseases. The cellular specificity of transgene expression from rAAV2/1 vectors (recombinant adeno-associated viral vectors pseudotyped with viral capsids from serotype 1) using the tetracycline-inducible (TetON) expression cassette in comparison with the cytomegalovirus (CMV) promoter was investigated in the rat nigrostriatal pathway. After intrastriatal injection, although green fluorescent protein (GFP) was expressed mainly in neurons with both vectors, the relative proportions of DARPP-32-positive projection neurons and parvalbumin-positive interneurons were, respectively, 13:1 and 2:1 for the CMV and TetON vectors.
View Article and Find Full Text PDFBackground: Efficient protection of dopaminergic neurons against a subsequent 6-hydroxydopamine lesion by glial cell line-derived neurotrophic factor (GDNF) gene delivery has been demonstrated. By contrast, the neurorestorative effects of GDNF administered several weeks after the toxin have been less characterized. In particular, whether these were permanent or dependent on the continuous presence of GDNF remains elusive.
View Article and Find Full Text PDFMinocycline has been shown to be neuroprotective in various models of neurodegenerative diseases. However, its potential in Huntington's disease (HD) models characterized by calpain-dependent degeneration and inflammation has not been investigated. Here, we have tested minocycline in phenotypic models of HD using 3-nitropropionic acid (3NP) intoxication and quinolinic acid (QA) injections.
View Article and Find Full Text PDFMinocycline, an antibiotic of the tetracycline family, has been shown to display neurorestorative or neuroprotective properties in various models of neurodegenerative diseases. In particular, it has been shown to delay motor alterations, inflammation and apoptosis in models of Huntington's disease, amyotrophic lateral sclerosis and Parkinson's disease. Despite controversies about its efficacy, the relative safety and tolerability of minocycline have led to the launching of various clinical trials.
View Article and Find Full Text PDFMinocycline has been suggested to be an anti-apoptotic compound and an anti-inflammatory agent in various models of neurodegeneration. In the present study, using a stable cell line expressing green fluorescent protein under the control of a tetracycline-responsive promoter, we demonstrate that minocycline is able to promote tetracycline-controlled gene expression although it needs longer time and higher concentration to reach the effect obtained with the classical inducer doxycycline. Furthermore, the extinction of the system after antibiotics removal is faster when using minocycline.
View Article and Find Full Text PDF