The forecasting of lower limb trajectories can improve the operation of assistive devices and minimise the risk of tripping and balance loss. The aim of this work was to examine four Long Short Term Memory (LSTM) neural network architectures (Vanilla, Stacked, Bidirectional and Autoencoders) in predicting the future trajectories of lower limb kinematics, i.e.
View Article and Find Full Text PDFFront Bioeng Biotechnol
May 2020
This study determined whether the kinematics of lower limb trajectories during walking could be extrapolated using long short-term memory (LSTM) neural networks. It was hypothesised that LSTM auto encoders could reliably forecast multiple time-step trajectories of the lower limb kinematics, specifically linear acceleration (LA) and angular velocity (AV). Using 3D motion capture, lower limb position-time coordinates were sampled (100 Hz) from six male participants (age 22 ± 2 years, height 1.
View Article and Find Full Text PDF