Publications by authors named "Abdelrahman S Mayhoub"

() is one of the most threatening bacteria globally, causing high mortality and morbidity in humans and animals, and is considered a public health threat that requires urgent and aggressive action. Interruption of the human gut microbiome and the development of antibiotic resistance urgently require development and synthesis of effective alternative antibiotics with minimal effects on the normal gut microbial flora. In this study, cyclization of the aminoguanidine head to the thiazole nucleus while maintaining its other pharmacophoric features leads to selective targeting of as shown in the graphical abstract.

View Article and Find Full Text PDF

The structure-activity relationship of a new -butylphenylthiazole series, with a pyrimidine linker, was investigated. We wished to expand knowledge of this novel class of antibiotics by generating 21 new derivatives bearing ≥2 heteroatoms in their side chains. Their activity was examined against isolates of methicillin-resistant (MRSA), , , , and .

View Article and Find Full Text PDF

Novel anion-exchange electrospun fiber membranes of polycaprolactone doped with the cationic, cross-linked colesevelam polymer are reported. The weight fraction of cross-linked cationic colesevelam polymer, as the active phase within the PCL matrix, can readily be controlled in the synthesis of the mixed-matrix fibers (Cole@PCL), enabling optimization of the ion-exchange properties of the resulted membranes. This approach enabled adaptation of anion-exchange resins to a permeable, flexible membrane form, which is a significant advancement toward futuristic water treatment applications, demonstrated herein for the removal of trace contaminants, including nitrates and phosphates, as well as anionic dyes.

View Article and Find Full Text PDF

Cryptococcal infections remain a major cause of mortality worldwide due to the ability of to pass through the blood-brain barrier (BBB) causing lethal meningitis. The limited number of available therapeutics, which exhibit limited availability, severe toxicity and low tolerability, necessitates the development of new therapeutics. Investigating the antifungal activity of a novel series of naphthylthiazoles provided -diaminocyclohexyl derivative 18 with many advantageous attributes as a potential therapeutic for cryptococcal meningitis.

View Article and Find Full Text PDF

The combination of antibacterial and antiviral agents is becoming a very important aspect of dealing with resistant bacterial and viral infections. The N-phenylthiazole scaffold was found to possess significant anti-MRSA, antifungal, and anti-COVID-19 activities as previously published; hence, a slight refinement was proposed to attach various alkyne lipophilic tails to this promising scaffold, to investigate their effects on the antimicrobial activity of the newly synthesized compounds and to provide a valuable structure-activity relationship. Phenylthiazole 4 m exhibited the most potent anti-MRSA activity with 8 μg/mL MIC value.

View Article and Find Full Text PDF

Antimicrobial resistance has become a concern as a worldwide threat. A novel scaffold of phenylthiazoles was recently evaluated against multidrug-resistant to control the emergence and spread of antimicrobial resistance, showing good results. Several structural modifications are needed based on the structure-activity relationships (SARs) of this new antibiotic class.

View Article and Find Full Text PDF

With the continuous and alarming threat of exhausting the current antimicrobial arsenals, efforts are urgently needed to develop new effective ones. In this study, the antibacterial efficacy of a set of structurally related acetylenic-diphenylurea derivatives carrying the aminoguanidine moiety was tested against a panel of multidrug-resistant Gram-positive clinical isolates. Compound 18 was identified with a superior bacteriological profile than the lead compound I.

View Article and Find Full Text PDF

Antimicrobial resistance is an aggravating global issue therefore it has been under extensive research in an attempt to reduce the number of antibiotics that are constantly reported as obsolete jeopardizing the lives of millions worldwide. Thiazoles possess a reputation as one of the most diverse biologically active nuclei, and phenylthiazoles are no less exceptional with an assorted array of biological activities such as anthelmintic, insecticidal, antimicrobial, antibacterial, and antifungal activity. Recently phenyl thiazoles came under the spotlight as a scaffold having strong potential as an anti-MRSA lead compound.

View Article and Find Full Text PDF

A set of structurally related diphenylurea derivatives bearing aminoguanidine moiety were synthesized, and their antibacterial activity was assessed against a panel of multi-drug resistant Gram-positive clinical isolates. Two compounds 6 and 24 were identified with better bacteriological profile than the lead compound I. The multi-step resistance development studies indicated that MRSA are less likely to develop resistance toward diphenylurea compounds.

View Article and Find Full Text PDF

To minimize the intrinsic toxicity of the antibacterial agent hydrazinyloxadiazole 1, the hydrazine moiety was replaced with ethylenediamine (compound 7). This replacement generated a potent antifungal agent with no antibacterial activity. Notably, use of a 1,2-diaminocyclohexane moiety, as a conformationally-restricted isostere for ethylenediamine, potentiated the antifungal activity in both the cis and trans forms of N-(5-(2-([1,1'-biphenyl]-4-yl)-4-methylthiazol-5-yl)-1,3,4-oxadiazol-2-yl)cyclohexane-1,2-diamine (compounds 16 and 17).

View Article and Find Full Text PDF

Exploring the structure-activity relationship (SAR) at the cationic part of arylthiazole antibiotics revealed hydrazine as an active moiety. The main objective of the study is to overcome the inherited toxicity associated with the free hydrazine. A series of hydrocarbon bridges was inserted in between the groups, to separate the two amino groups.

View Article and Find Full Text PDF

The increasing emergence of antibiotic-resistant bacterial pathogens calls for additional urgency in the development of new antibacterial candidates. N-Phenyl-2-aminothiazoles are promising candidates that possess potent anti-MRSA activity and could potentially replenish the MRSA antibiotic pipeline. The initial screen of a series of compounds in this novel class against several bacterial strains revealed that the aminoguanidine analogues possessed promising activities and superior safety profiles.

View Article and Find Full Text PDF

The limited number of antifungals and the rising frequency of azole-resistant Candida species are growing challenges to human medicine. Drug repurposing signifies an appealing approach to enhance the activity of current antifungal drugs. Here, we evaluated the ability of Pharmakon 1600 drug library to sensitize an azole-resistant Candida albicans to the effect of fluconazole.

View Article and Find Full Text PDF

Azole antifungals are vital therapeutic options for treating invasive mycotic infections. However, the emergence of azole-resistant isolates combined with limited therapeutic options presents a growing challenge in medical mycology. To address this issue, we utilized microdilution checkerboard assays to evaluate nine stilbene compounds for their ability to interact synergistically with azole drugs, particularly against azole-resistant fungal isolates.

View Article and Find Full Text PDF

Clostridium difficile is a leading cause of morbidity and mortality particularly in hospital settings. In addition, treatment is very challenging due to the scarcity of effective therapeutic options. Thus, there remains an unmet need to identify new therapeutic agents capable of treating C.

View Article and Find Full Text PDF

Studying the structure-activity relationships (SAR) of oxadiazolylthiazole antibiotics unexpectedly led us to identify ethylenediamine- and propylenediamine-analogs as potential antimycotic novel lead structures. Replacement of the ethylenediamine moiety for the lead compound 7 with cis-diaminocyclohexyl group (compound 18) significantly enhanced the antifungal activity. In addition to the high safety margin of 18 against mammalian cells, it showed highly selective broad-spectrum activity against fungal cells without inhibiting the human normal microbiota.

View Article and Find Full Text PDF

Candida species are a leading source of healthcare infections globally. The limited number of antifungal drugs combined with the isolation of Candida species, namely C. albicans and C.

View Article and Find Full Text PDF

Compounds with high lipophilic properties are often associated with bad physicochemical properties, triggering many off-targets, and less likely to pass clinical trials. Two metabolically stable phenylthiazole antibiotic scaffolds having notable high lipophilic characters, one with alkoxy side chain and the other one with alkynyl moiety, were derivatized by inserting a cyclic amine at the lipophilic tail with the objective of improving physicochemical properties and the overall pharmacokinetic behavior. Only alkynyl derivatives with 4- or 5-membered rings showed remarkable antibacterial activity.

View Article and Find Full Text PDF

Bacterial resistance to antibiotics is presently one of the most pressing healthcare challenges and necessitates the discovery of new antibacterials with unique chemical scaffolds. However, the determination of the optimal balance between structural requirements for pharmacological action and pharmacokinetic properties of novel antibacterial compounds is a significant challenge in drug development. The incorporation of lipophilic moieties within a compound's core structure can enhance biological activity but have a deleterious effect on drug-like properties.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists have found new classes of antibiotics, but bacteria are becoming resistant to them quickly.
  • The World Health Organization (WHO) suggests using new ideas to create antibiotics instead of sticking with old methods.
  • The review talks about seven proteins in bacteria that no antibiotics are currently targeting and suggests new ways to attack them.
View Article and Find Full Text PDF

A novel series of phenylthiazoles bearing cyclic amines at the phenyl-4 position was prepared with the objective of decreasing lipophilicity and improving the overall physicochemical properties and pharmacokinetic profile of the compounds. Briefly, the piperidine ring (compounds 10 and 12) provided the best ring size in terms of antibacterial activity when tested against 16 multidrug-resistant clinical isolates. Both compounds were superior to vancomycin in the ability to eliminate methicillin-resistant Staphylococcus aureus (MRSA), residing within infected macrophages and to disrupt mature MRSA biofilm.

View Article and Find Full Text PDF

The narrow antibacterial spectrum of phenylthiazole antibiotics was expanded by replacing central thiazole with a pyrazole ring while maintaining its other pharmacophoric features. The most promising derivative, compound , was more potent than vancomycin against multidrug-resistant Gram-positive clinical isolates, including vancomycin- and linezolid-resistant methicillin-resistant MRSA), with a minimum inhibitory concentration (MIC) value as low as 0.5 μg/mL.

View Article and Find Full Text PDF

Antibiotic resistance remains a pressing medical challenge for which novel antibacterial agents are urgently needed. The phenylthiazole scaffold represents a promising platform to develop novel antibacterial agents for drug-resistant infections. However, enhancing the physicochemical profile of this class of compounds remains a challenging endeavor to address to successfully translate these molecules into novel antibacterial agents in the clinic.

View Article and Find Full Text PDF

Chloramphenicol nitroreductase (CNR), a drug-modifying enzyme from Haemophilus influenzae, has been shown to be responsible for the conversion of the nitro group into an amine in the antibiotic chloramphenicol (CAM). Since CAM structurally bears a 4-nitrobenzene moiety, we explored the substrate promiscuity of CNR by investigating its nitroreduction of 4-nitrobenzyl derivatives. We tested twenty compounds containing a nitrobenzene core, two nitropyridines, one compound with a vinylogous nitro group, and two aliphatic nitro compounds.

View Article and Find Full Text PDF

The structure-activity and structure-kinetic relationships of a new -butylphenylthiazole series with oxadiazole linkers were conducted with the objective of obtaining a new orally available antibacterial compounds. Twenty-two new compounds were prepared, purified and identified. Their activity against methicillin-resistant were examined.

View Article and Find Full Text PDF