Publications by authors named "Abdelnoor R"

Bacterial pustule (BP), caused by pv. , is an important disease that, under favorable conditions, can drastically affect soybean production. We performed a genome-wide association study (GWAS) with a panel containing Brazilian and American cultivars, which were screened qualitatively and quantitatively against two Brazilian isolates (IBS 333 and IBS 327).

View Article and Find Full Text PDF

Soybean is a crucial crop for the Brazilian economy, but it faces challenges from the biotrophic fungus Phakopsora pachyrhizi, which causes Asian Soybean Rust (ASR). In this study, we aimed to identify SNPs associated with resistance within the Rpp1 locus, which is effective against Brazilian ASR populations. We employed GWAS and re-sequencing analyzes to pinpoint SNP markers capable of differentiating between soybean accessions harboring the Rpp1, Rpp1-b and other alternative alleles in the Rpp1 locus and from susceptible soybean cultivars.

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on the investigation and mapping of resistance to Asian soybean rust (ASR) in the soybean line PI 594756, comparing it to the susceptible line PI 594891.
  • Using Bulked Segregant Analysis (BSA) and a panel of isolates, researchers identified resistance traits, classifying PI 594756 as having monogenic dominant resistance, although it showed incomplete dominance when quantified.
  • Genetic mapping placed the resistance gene on chromosome 18, pinpointing it between specific base pair positions, and a haplotype analysis revealed unique SNPs that can aid in marker-assisted selection (MAS) for future breeding.
View Article and Find Full Text PDF

causes serious damage to soybean production and other crops worldwide. Plant molecular responses to RLN infection remain largely unknown and no resistance genes have been identified in soybean. In this study, we analyzed molecular responses to RLN infection in moderately resistant BRSGO (Chapadões-BRS) and susceptible TMG115 RR (TMG) genotypes.

View Article and Find Full Text PDF

Asian soybean rust, caused by the fungus , is one of the most important diseases affecting soybean production in tropical areas. During infection, secretes proteins from haustoria that are transferred into plant cells to promote virulence. To date, only one candidate effector protein has been characterized in detail to understand the mechanism by which it suppresses plant defenses to enhance infection.

View Article and Find Full Text PDF

A locus on chromosome 13, containing multiple TIR-NB-LRR genes and SNPs associated with M. javanica resistance, was identified using a combination of GWAS, resequencing, genetic mapping and expression profiling. Meloidogyne javanica, a root-knot nematode, is an important problem in soybean-growing areas, leading to severe yield losses.

View Article and Find Full Text PDF

Background & Objectives: Prevalence of hepatitis B virus in patients with rheumatic diseases has been reported differently among studies. The loss of immune control in these patients may result in the reactivation of HBV replication within hepatocytes. Considering the lifelong use of multiple anti-rheumatic drugs, screening for HBV is recommended before starting immunosuppressive or immunomodulatory therapy.

View Article and Find Full Text PDF

Background: Southern stem canker (SSC), caused by Diaporthe aspalathi (E. Jansen, Castl. & Crous), is an important soybean disease that has been responsible for severe losses in the past.

View Article and Find Full Text PDF

The most common types of anemia in rheumatoid arthritis (RA) are iron deficiency anemia (IDA) and anemia of chronic disease (ACD).The differentiation between both is important and challenging. Our objective is to select the most accurate method that differentiates IDA from ACD in RA patients.

View Article and Find Full Text PDF

Asian soybean rust (ASR) is one of the most destructive diseases affecting soybeans. The causative agent of ASR, the fungus Phakopsora pachyrhizi, presents characteristics that make it difficult to study in vitro, limiting our knowledge of plant-pathogen dynamics. Therefore, this work used leaf lesion laser microdissection associated with deep sequencing to determine the pathogen transcriptome during compatible and incompatible interactions with soybean.

View Article and Find Full Text PDF

Background Systemic lupus erythematosus (SLE) is a complex autoimmune disease that occurs worldwide in both children and adults, with different disease manifestations, activity and severity between them. Objectives To analyse the difference in disease onset patterns and activity in Egyptian children and adults with SLE. Methods A retrospective cohort study conducted on 298 Egyptian SLE patients, 215 adults (a-SLE) (>18 years) and 83 children (j-SLE) (≤18 years).

View Article and Find Full Text PDF
Article Synopsis
  • Asian soybean rust (ASR), caused by the fungus Phakopsora pachyrhizi, has potential crop losses over 80% and currently lacks durable resistance in soybean cultivars.
  • The study utilized laser capture microdissection, RNA sequencing, and bioinformatics to identify thousands of expressed contigs and a secretome of 851 proteins, revealing potential effector candidates.
  • Some of these effector candidates were found to suppress plant immunity during early infection stages, supporting their role in facilitating ASR infection in soybeans.
View Article and Find Full Text PDF

Background: Soybean [Glycine max (L.) Merrill] is one of the most important legumes cultivated worldwide, and Brazil is one of the main producers of this crop. Since the sequencing of its reference genome, interest in structural and allelic variations of cultivated and wild soybean germplasm has grown.

View Article and Find Full Text PDF

A 55% transformation efficiency was obtained by our optimized protocol; and we showed that GmELF1 - β and GmELF1 - α are the most stable reference genes for expression analyses under this specific condition. Gene functional analyses are essential to the validation of results obtained from in silico and/or gene-prospecting studies. Genetic transformation methods that yield tissues of transient expression quickly have been of considerable interest to researchers.

View Article and Find Full Text PDF

Asian soybean rust (ASR), caused by the obligate biotrophic fungus Phakopsora pachyrhizi, is one of most important diseases in the soybean (Glycine max (L.) Merr.) agribusiness.

View Article and Find Full Text PDF

Myb genes constitute one of the largest transcription factor families in the plant kingdom. Soybean MYB transcription factors have been related to the plant response to biotic stresses. Their involvement in response to Phakopsora pachyrhizi infection has been reported by several transcriptional studies.

View Article and Find Full Text PDF

Background: Many previous studies have shown that soybean WRKY transcription factors are involved in the plant response to biotic and abiotic stresses. Phakopsora pachyrhizi is the causal agent of Asian Soybean Rust, one of the most important soybean diseases. There are evidences that WRKYs are involved in the resistance of some soybean genotypes against that fungus.

View Article and Find Full Text PDF

Drought is a significant constraint to yield increase in soybean. The early perception of water deprivation is critical for recruitment of genes that promote plant tolerance. DeepSuperSAGE libraries, including one control and a bulk of six stress times imposed (from 25 to 150 min of root dehydration) for drought-tolerant and sensitive soybean accessions, allowed to identify new molecular targets for drought tolerance.

View Article and Find Full Text PDF

Rpp4 (Resistance to Phakopsora pachyrhizi 4) confers resistance to Phakopsora pachyrhizi Sydow, the causal agent of Asian soybean rust (ASR). By combining expression profiling and virus induced gene silencing (VIGS), we are developing a genetic framework for Rpp4-mediated resistance. We measured gene expression in mock-inoculated and P.

View Article and Find Full Text PDF

Background: The Hsp20 genes are associated with stress caused by HS and other abiotic factors, but have recently been found to be associated with the response to biotic stresses. These genes represent the most abundant class among the HSPs in plants, but little is known about this gene family in soybean. Because of their apparent multifunctionality, these proteins are promising targets for developing crop varieties that are better adapted to biotic and abiotic stresses.

View Article and Find Full Text PDF

Soybean [Glycine max (L.) Merril], one of the most important crop species in the world, is very susceptible to abiotic and biotic stress. Soybean plants have developed a variety of molecular mechanisms that help them survive stressful conditions.

View Article and Find Full Text PDF

Soybean farming has faced several losses in productivity due to drought events in the last few decades. However, plants have molecular mechanisms to prevent and protect against water deficit injuries, and transcription factors play an important role in triggering different defense mechanisms. Understanding the expression patterns of transcription factors in response to water deficit and to environmental diurnal changes is very important for unveiling water deficit stress tolerance mechanisms.

View Article and Find Full Text PDF

Physical maps are important tools to uncover general chromosome structure as well as to compare different plant lineages and species, helping to elucidate genome structure, evolution and possibilities regarding synteny and colinearity. The increasing production of sequence data has opened an opportunity to link information from mapping studies to the underlying sequences. Genome browsers are invaluable platforms that provide access to these sequences, including tools for genome analysis, allowing the integration of multivariate information, and thus aiding to explain the emergence of complex genomes.

View Article and Find Full Text PDF

Plants experience various environmental stresses, but tolerance to these adverse conditions is a very complex phenomenon. The present research aimed to evaluate a set of genes involved in osmotic response, comparing soybean and medicago with the well-described Arabidopsis thaliana model plant. Based on 103 Arabidopsis proteins from 27 categories of osmotic stress response, comparative analyses against Genosoja and Medicago truncatula databases allowed the identification of 1,088 soybean and 1,210 Medicago sequences.

View Article and Find Full Text PDF