Study Objectives: Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), and is associated with increased cardiovascular mortality that may not be reduced by standard therapies. Inappropriate activation of the renin-angiotensin-aldosterone system occurs in IH, and mineralocorticoid receptor (MR) blockade has been shown to improve vascular outcomes in cardiovascular disease. Thus, we hypothesized that MR inhibition prevents coronary and renal vascular dysfunction in mice exposed to chronic IH.
View Article and Find Full Text PDFThe acute manifestations of coronavirus disease 2019 (COVID-19) exhibit the hallmarks of sepsis-associated complications that reflect multiple organ failure. The inflammatory cytokine storm accompanied by an imbalance in the pro-inflammatory and anti-inflammatory host response to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection leads to severe and critical septic shock. The sepsis signature in severely afflicted COVID-19 patients includes cellular reprogramming and organ dysfunction that leads to high mortality rates, emphasizing the importance of improved clinical care and advanced therapeutic interventions for sepsis associated with COVID-19.
View Article and Find Full Text PDFObstructive sleep apnea (OSA), characterized by episodes of intermittent hypoxia (IH), is highly prevalent in patients with abdominal aortic aneurysm (AAA). However, whether IH serves as an independent risk factor for AAA development remains to be investigated. Here, we determined the effects of chronic (6 mo) IH on angiotensin (Ang II)-induced AAA development in C57BL/6J male mice and investigated the underlying mechanisms of IH in cultured vascular smooth muscle cells (SMCs).
View Article and Find Full Text PDFStudy Objectives: Lyme arthritis is a common late-stage complication of infection by Borrelia burgdorferi, the agent of Lyme disease. Patients with Lyme arthritis report increased levels of sleep disturbance associated with pain. Using a mouse model of experimental Lyme arthritis, we investigated the effect of disrupted sleep on the development and resolution of joint inflammation.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is a highly prevalent condition that is associated with accelerated biological aging and multiple end-organ morbidities. Current treatments, such as continuous positive airway pressure (CPAP), have shown limited cognitive, metabolic, and cardiovascular beneficial outcomes despite adherence. Thus, adjunct therapies aiming to reduce OSA burden, such as senolytics, could improve OSA outcomes.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is a highly prevalent chronic disease affecting nearly a billion people globally and increasing the risk of multi-organ morbidity and overall mortality. However, the mechanisms underlying such adverse outcomes remain incompletely delineated. Extracellular vesicles (exosomes) are secreted by most cells, are involved in both proximal and long-distance intercellular communication, and contribute toward homeostasis under physiological conditions.
View Article and Find Full Text PDFNeurobiol Sleep Circadian Rhythms
November 2022
Obstructive sleep apnea (OSA) is a chronic and highly prevalent condition characterized by chronic intermittent hypoxia (IH) and sleep fragmentation (SF), and can lead to a vast array of end-organ morbidities, particularly affecting cardiovascular, metabolic and neurobehavioral functioning. OSA can induce cognitive and behavioral and mood deficits. Male C57Bl/6J 8-week-old mice were housed in custom-designed cages with a silent motorized mechanical sweeper traversing the cage floor at 2-min intervals (SF) during daylight for four weeks.
View Article and Find Full Text PDFBackground: Obstructive sleep apnoea (OSA) is a chronic prevalent condition characterised by intermittent hypoxia (IH), and is associated with endothelial dysfunction and coronary artery disease (CAD). OSA can induce major changes in gut microbiome diversity and composition, which in turn may induce the emergence of OSA-associated morbidities. However, the causal effects of IH-induced gut microbiome changes on the vasculature remain unexplored.
View Article and Find Full Text PDFStudy Objectives: Obstructive sleep apnea (OSA) is a chronic condition characterized by intermittent hypoxia (IH) that is implicated in an increased risk of cardiovascular disease (i.e., coronary heart disease, CHD) and associated with increased overall and cardiac-specific mortality.
View Article and Find Full Text PDFMonocarboxylate transporter 2 (MCT2) is a major high-affinity pyruvate transporter encoded by the SLC16A7 gene, and is associated with glucose metabolism and cancer. Changes in the gut microbiota and host immune system are associated with many diseases, including cancer. Using conditionally expressed MCT2 in mice and the TC1 lung carcinoma model, we examined the effects of MCT2 on lung cancer tumor growth and local invasion, while also evaluating potential effects on fecal microbiome, plasma metabolome, and bulk RNA-sequencing of tumor macrophages.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is associated with increased cutaneous melanoma incidence and adverse outcomes. Exosomes are secreted by most cells, and play a role in OSA-associated tumor progression and metastasis. We aimed to study the effects of plasma exosomes from OSA patients before and after adherent treatment with continuous positive airway pressure (CPAP) on melanoma cells lines, and also to identify exosomal miRNAs from melanoma cells exposed to intermittent hypoxia (IH) or normoxia.
View Article and Find Full Text PDFIntermittent hypoxia (IH), a hallmark of obstructive sleep apnea (OSA), is associated with cardiovascular and metabolic dysfunction. However, the mechanisms underlying these morbidities remain poorly delineated. Extracellular vesicles (EVs) mediate intercellular communications, play pivotal roles in a multitude of physiological and pathological processes, and could mediate IH-induced cellular effects.
View Article and Find Full Text PDFLate-gestational sleep fragmentation (LG-SF) and intermittent hypoxia (LG-IH), two hallmarks of obstructive sleep apnea, lead to metabolic dysfunction in the offspring. We investigated specific biological processes that are epigenetically regulated by LG-SF and LG-IH. We analyzed DNA methylation profiles in offspring visceral white adipose tissues by MeDIP-chip followed by pathway analysis.
View Article and Find Full Text PDFSleep is very important for overall health and quality of life, while sleep disorder has been associated with several human diseases, namely cardiovascular, metabolic, cognitive, and cancer-related alterations. Obstructive sleep apnea (OSA) is the most common respiratory sleep-disordered breathing, which is caused by the recurrent collapse of the upper airway during sleep. OSA has emerged as a major public health problem and increasing evidence suggests that untreated OSA can lead to the development of various diseases including neurodegenerative diseases.
View Article and Find Full Text PDFBackground: Gut microbiota (GM) contribute to obesity and insulin resistance (IR). Obstructive sleep apnea (OSA), characterized by intermittent hypoxia (IH), promotes IR and alters GM. Since circulating exosomes are implicated in IR, we examined the effects of IH and physical activity (PA) in mice on GM, colonic epithelium permeability, systemic IR, and plasma exosome cargo, and exosome effects on visceral white adipose tissues (vWAT) IR.
View Article and Find Full Text PDFIntermittent hypoxia (IH) is a hallmark of obstructive sleep apnea (OSA) and induces metabolic dysfunction manifesting as inflammation, increased lipolysis and insulin resistance in visceral white adipose tissues (vWAT). However, the cell types and their corresponding transcriptional pathways underlying these functional perturbations are unknown. Here, we applied single nucleus RNA sequencing (snRNA-seq) coupled with aggregate RNA-seq methods to evaluate the cellular heterogeneity in vWAT following IH exposures mimicking OSA.
View Article and Find Full Text PDFNight shift work increases risk of metabolic disorders, particularly obesity and insulin resistance. While the underlying mechanisms are unknown, evidence points to misalignment of peripheral oscillators causing metabolic disturbances. A pathway conveying such misalignment may involve exosome-based intercellular communication.
View Article and Find Full Text PDFObstructive sleep apnea (OSA) is a chronic prevalent condition characterized by intermittent hypoxia (IH) and sleep fragmentation (SF). Evidence suggests that OSA can alter the gut microbiome (GM) diversity and composition that may then promote the occurrence of some of the OSA-associated morbidities. However, it is unclear whether perturbations in the GM caused by IH can elicit sleep disturbances that underlie the increased sleep propensity that occurs in IH-exposed mice.
View Article and Find Full Text PDFBackground: We investigated the influence of hypoxia on the concentration of mitochondrial and nuclear cell-free DNA (McfDNA and NcfDNA, respectively).
Method: By an ultra-sensitive quantitative PCR-based assay, McfDNA and NcfDNA were measured in the supernatants of different colorectal cell lines, and in the plasma of C57/Bl6 mice engrafted with TC1 tumour cells, in normoxic or hypoxic conditions.
Results: Our data when setting cell culture conditions highlighted the higher stability of McfDNA as compared to NcfDNA and revealed that cancer cells released amounts of nuclear DNA equivalent to the mass of a chromosome over a 6-h duration of incubation.
Obstructive sleep apnea (OSA) is characterized by recurrent upper airway collapse during sleep resulting in impaired blood gas exchange, namely intermittent hypoxia (IH) and hypercapnia, fragmented sleep (SF), increased oxidative stress and systemic inflammation. Among a myriad of potential associated morbidities, OSA has been particularly implicated as mechanistically contributing to the prevalence and severity of cardiovascular diseases (CVD). However, the benefits of continuous positive airway pressure (CPAP), which is generally employed in OSA treatment, to either prevent or improve CVD outcomes remain unconvincing, suggesting that the pathophysiological mechanisms underlying the incremental CVD risk associated with OSA are not clearly understood.
View Article and Find Full Text PDFPediatric obstructive sleep apnea (P-OSA) is associated with neurocognitive deficits and endothelial dysfunction, suggesting the possibility that disruption of the blood-brain barrier (BBB) may underlie these morbidities. Extracellular vesicles (EVs), which include exosomes, are small particles involved in cell-cell communications via different mechanisms and could play a role in OSA-associated end-organ injury. To examine the roles of EVs in BBB dysfunction, we recruited three groups of children: (a) absence of OSA or cognitive deficits (CL, = 6), (b) OSA but no evidence of cognitive deficits (OSA-NC(-), = 12), and (c) OSA with evidence of neurocognitive deficits (OSA-NC(+), = 12).
View Article and Find Full Text PDFSleep remains one of the least understood phenomena in biology, and sleep disturbances are one of the most common behavioral problems in childhood. The etiology of sleep disorders is complex and involves both genetic and environmental factors. Epilepsy is the most popular childhood neurological condition and is characterized by an enduring predisposition to generate epileptic seizures, and the neurobiological, cognitive, psychological, and social consequences of this condition.
View Article and Find Full Text PDFBackground: Obstructive sleep apnoea (OSA) increases the risk of an abnormal nondipping 24 h blood pressure profile, an independent risk factor for cardiovascular disease (CVD). We examined differential exosomal microRNA (miRNA) expression in untreated OSA patients with normal dipping blood pressure (NDBP) and reverse dipping blood pressure (RDBP), an extreme form of nondipping, to understand the mechanisms underlying nondipping blood pressure in OSA.
Methods: 46 patients (15 RDBP 31 NDBP) matched for OSA severity (respiratory event index 32.
We report that placental growth factor (PlGF) negatively affects the endothelial cell (EC) barrier function through a novel regulatory mechanism. The PlGF mAb promotes (but recombinant protein disrupts) EC barrier function, thus affecting the barrier-forming protein levels, membrane distribution, and EC monolayer impedance by the electrical cell-impedance sensing system, Western blot, and immunofluorescence staining. RNA sequencing-based transcriptome analysis identified the up-regulation of the pentose phosphate pathway (PPP) and the antioxidant defense protein by PlGF blockade.
View Article and Find Full Text PDF