Publications by authors named "Abdelmottaleb Ben Lamine"

This paper contributed with new findings to understand and characterize a heavy metal adsorption on a composite adsorbent. The synthesized polypyrrole-polyaniline@rice husk ash (PPY-PANI@RHA) was prepared and used as an adsorbent for the removal of hexavalent chromium Cr(VI). The adsorption isotherms of Cr(VI) ions on PPY-PANI@RHA were experimentally determined at pH 2, and at different adsorption temperatures (293, 303, and 313 K).

View Article and Find Full Text PDF

The double layer adsorption of sulfamethoxazole, ketoprofen and carbamazepine on a phosphorus carbon-based adsorbent was analyzed using statistical physics models. The objective of this research was to provide a physicochemical analysis of the adsorption mechanism of these organic compounds via the calculation of both steric and energetic parameters. Results showed that the adsorption mechanism of these pharmaceuticals was multimolecular where the presence of molecular aggregates (mainly dimers) could be expected in the aqueous solution.

View Article and Find Full Text PDF

This study presents a theoretical analysis of the adsorption process of pharmaceutical pollutants, specifically acetaminophen (ATP) and diclofenac (DFC), onto activated carbon (AC) derived from avocado biomass waste. The adsorption isotherms of ATP and DFC were analyzed using a multilayer model, which revealed the formation of two to four adsorption layers depending on the temperature of the aqueous solution. The saturation adsorption capacities for ATP and DFC were 52.

View Article and Find Full Text PDF

This theoretical investigation delves into the analysis of Reactive red 2 (RR-2) adsorption isotherms on metal hydroxide employing a sophisticated double-layer model characterized by dual-energy levels within the realm of physical adsorption phenomena. An examination of five distinct statistical physics frameworks was undertaken to elucidate the modeling and interpretation of equilibrium data. Expression for the physico-chemical parameters involved in the adsorption phenomena was derived based on statistical physics treatment.

View Article and Find Full Text PDF

The capture of CO by biochar has recently become one of the cornerstones of circular economy models for a sustainable society. In this work, we synthesized an activated biocarbon using Trametes gibbosa (BioACTG) in a one-step synthesis. We investigated CO adsorption mechanisms under five different temperatures using a statistical physics approach.

View Article and Find Full Text PDF

The adsorption of ammonium from water was studied on an activated carbon obtained using raw oil palm shell and activated with acetic acid. The performance of this adsorbent was tested at different operating conditions including the solution pH, adsorbent dosage, and initial ammonium concentration. Kinetic and equilibrium studies were carried out, and their results were analyzed with different models.

View Article and Find Full Text PDF

The work deals with the removal of two dyes, namely methylene blue (MB) and methyl orange (MO), from polluted water by adsorption onto CuO nanoparticles synthesized with a green synthesis procedure, starting from plant resources. Adsorption isotherms are determined at different temperatures aiming at investigating the adsorption mechanisms of the two dyes. The experimental results indicate that, for both MB and MO, the adsorption capacity increases with increasing temperature, with slight differences in the case of MO.

View Article and Find Full Text PDF

In the present paper, a double layer advanced model was used to investigate the adsorption process putatively involved in the olfactory perception of sotolone and abhexone molecules on the human olfactory receptor OR8D1. The number of adsorbed molecules or the fraction of adsorbed molecule per site, n, informed that the two odorants molecules are docked on OR8D1 binding sites with mixed parallel and nonparallel anchorages. Furthermore, the estimated molar adsorption energy (-ΔE and -ΔE) were inferior to 40 kJ/mol for the two adsorption systems, which confirmed the physical nature and the exothermic character of the adsorption process.

View Article and Find Full Text PDF

In this work, an adsorption phenomenon putatively involved in the olfactory sense of phenylacetic acid, 4-chlorophenylacetic acid, and 4-methoxyphenylacetic acid pheromones in the Zebrafish olfactory receptor ORA1 was a helpful mechanism in interpreting and characterizing the olfaction process at a molecular level. Hence, the experimental dose-olfactory response curves were fitted by applying the one-layer adsorption model with a single energy (1LM1E). On one hand, the different parameters introduced in the selected model were used to microscopically study the three olfactory systems.

View Article and Find Full Text PDF

The increased use of antibiotics worldwide turned into a serious preoccupation due to their environmental and health impacts. Since the majority of antibiotic residuals are hardly eliminated from wastewater, based on usual methods, other treatments receive considerable attention. Adsorption is known as the most effective method of the treatment of antibiotics.

View Article and Find Full Text PDF

In the present paper, a putative adsorption process of two odorants thiols (3-mercapto-2-methylbutan-1-ol and 3-mercapto-2-methylpentan-1-ol) on the human olfactory receptor OR2M3 has been investigated via advanced models developed by a grand canonical formalism of statistical physics. For the two olfactory systems, a monolayer model with two types of energy (ML2E) has been selected to correlate with the experimental data. The physicochemical analysis of the statistical physics modeling results showed that the adsorption system of the two odorants was multimolecular.

View Article and Find Full Text PDF

The main purpose of this research is to theoretically investigate the adsorption of two pharmaceutical molecules, aspirin and paracetamol, using two composite adsorbents, N-CNT/β-CD and Fe/N-CNT/β-CD nanocomposite polymers. A multilayer model developed by statistical physics is implemented to explain the experimental adsorption isotherms at the molecular scale, so as to overpass some limitations of the classical adsorption models. The modelling results indicate that the adsorption of these molecules is almost accomplished by the formation of 3 to 5 adsorbate layers, depending on the operating temperature.

View Article and Find Full Text PDF

Apis cerana cerana counted on its sensitive olfactory system to make survival activities in the surrounding environment and the olfactory receptors can be considered as a primary requirement of odorant detection, recognition and coding. Indeed, the exploitation of the olfactory system of insects in particular the Asian honeybee "Apis cerana cerana" can be the best experimental model to investigate the essentials of the chemosensitivity and may help to better understand the olfactory perception in insects. Hence, an advanced statistical physics modeling via the monolayer model with single energy (n ≠ 1) of the three dose-olfactory responses curves indicated that undecanoic acid, 1-octyl alcohol and 1-nonanol were docked with a mixed parallel and non-parallel orientation on AcerOr1.

View Article and Find Full Text PDF

An advanced monolayer adsorption model of an ideal gas was successfully employed to investigate the adsorption of vanillin, vanillin methyl ether, vanillin ethyl ether, and vanillin acetate odorants on mouse eugenol olfactory receptor mOR-EG. In order to understand the adsorption process putatively introduced in olfactory perception, model parameters were analyzed. Hence, fitting results showed that the studied vanilla odorants were linked in mOR-EG binding pockets with a non-parallel orientation, and their adsorption was a multi-molecular process (n > 1).

View Article and Find Full Text PDF

The adsorption of the trimethylthiazoline (TMT) on the human olfactory receptor OR5K1 and the mouse olfactory receptor Olfr175 was the object of the present paper. The main contribution of this work was to characterize stereographically and energetically OR5K1 and Olfr175 activated by trimethylthiazoline molecules docked on the human and the mouse olfactory binding pockets using the grand canonical ensemble in statistical physics. The experimental data and the advanced statistical physics models revealed that the adsorption of the trimethylthiazoline on the human olfactory receptor OR5K1 can be interpreted using the monolayer model with single energy, while the monolayer model with two energies described the interaction between the trimethylthiazoline molecules and the mouse olfactory receptor Olfr175.

View Article and Find Full Text PDF

In the present paper, statistical physics formalism was used to understand the olfactory perception via the investigation of dose-olfactory response curves of a putative adsorption process of nine non key food odorants (non-KFOs) on the broadly tuned human olfactory receptor OR2W1, in order to quantitative characterize the interactions between the nine studied non-KFOs, i. e., furfuryl sulfide, furfuryl disulfide, benzyl methyl disulfide, furfuryl methyl disulfide, benzyl methyl sulfide, 1-phenylethanethiol, benzyl mercaptan, furfuryl methyl sulfide and 3-phenylpropanol molecules and OR2W1 binding sites at a molecular level.

View Article and Find Full Text PDF

In this work, two experimental dose-response curves of lyral molecules on the OR10J5 and the Olfr16 were employed in order to examine the evolution of physico-chemical parameters involved in the selected statistical physics model(s) to investigate the human and the mouse smelling of a floral scent. Indeed, one layer adsorption model on one type of sites with one energy (1LAM1T1E) and one layer adsorption model on two types of sites with two energies (1LAM2T2E), considered as appropriate models for the adsorption of lyral molecules on the OR10J5 and Olfr16, respectively, have been applied to fit the experimental data. Stereographic and energetic physico-chemical parameters, namely: the maximum response(s) at saturation, the number of docked molecules per olfactory receptor binding site and the concentration(s) at half saturation, were investigated to retrieve helpful information to describe the adsorption process putatively introduced in the olfaction perception.

View Article and Find Full Text PDF

The investigation of the adsorption process putatively involved in the olfactory perception of apocynin, guaiacylacetone, homovanillyl alcohol, 4-ethylguaiacol and homoguaiacol molecules on the mouse eugenol olfactory receptor mOR-EG was a very useful tool for comprising olfaction process at a molecular level. Indeed, the experimental data were correlated by using an advanced monolayer adsorption model with identical and independent binding sites. Thanks to the grand canonical ensemble in statistical physics formalism, the physico-chemical interpretations of modeling results indicated that the five odorants were adsorbed via a multi-molecular mechanism.

View Article and Find Full Text PDF

An activated carbon (AC) deriving from sludge is used in this research for the adsorption of two water pollutants, namely Reactive Black 5 (RB5) and Green Alizarin (GA) dyes, at different temperatures. The adsorption capacities varied from 277.2 to 312.

View Article and Find Full Text PDF

In this work, the absorption and desorption isotherms of hydrogen on TiCrMnFeRE (RE = La, Ce, Ho) metals were collected at three temperatures under the same experimental conditions. This was carried out in order to determine the rare earth effect on the hydrogen storage performance of the TiCrMnFe metal. The equilibrium data showing the hydrogen absorbed/released amounts per unit of absorbent mass have provided useful details to describe the absorption/desorption processes.

View Article and Find Full Text PDF

This work describes the modeling and analysis of methylene blue molecule on different adsorbents, namely, nickel alginate/graphene oxide (NA/GO) aerogel, nickel alginate/activated carbon (NA/AC) aerogel, and Trichosanthes kirilowii maxim shell activated carbon (TKAC). A multilayer statistical physics model was used to calculate the energetic and steric parameters of the adsorption of methylene blue on these adsorbents. Based on the modeling investigation, it was concluded that the formation of multiple dye adsorbed layers on these adsorbents could be feasible where physical adsorption interactions could be involved.

View Article and Find Full Text PDF

The work reports a modeling analysis of single-compound and binary adsorption of Pb and Cd ions from polluted water onto the activated carbon at room temperature. The homogeneous model for single adsorption (HM) and the exclusive extended monolayer model for binary adsorption (EEMM) are applied for the interpretation of the experimental data set. The adopted models correlate the entire set of adsorption data, allowing a thorough description of the occurring phenomena.

View Article and Find Full Text PDF

The paper describes a theoretical analysis of the adsorption of nicotinamide and propranolol onto a magnetic-activated carbon (MAC). For a better evaluation of the adsorption mechanism, adsorption isotherms expressing the variation of the adsorption capacity as function of adsorbate concentration were determined at different temperatures ranging from 20 to 45 °C. For both the analytes, experimental tests reveal that adsorption capacity increases with temperature.

View Article and Find Full Text PDF

This research work is a contribution to understand the olfaction mechanism at a molecular level of vanillin, ethyl vanillin, coumarin and quinoline molecules using a modeling of a putative adsorption process by analytical model established by statistical physics formalism. A statistical physics modeling using the monolayer model with identical and independent binding sites of the responses of the two human olfactory receptors OR10G4 and OR2B11 showed that vanillin and quinoline were adsorbed with a mixed non-parallel and parallel orientation on OR10G4 and on OR2B11, respectively. However, ethyl vanillin and coumarin were anchored with a total non-parallel orientation.

View Article and Find Full Text PDF