Publications by authors named "Abdellatif Chouai"

Members of a family of Ru(II)-appended pyrenylethynylene dyads were synthesized, characterized according to their photophysical and photobiological properties, and evaluated for their collective potential as photosensitizers for metal-organic photodynamic therapy. The dyads in this series possess lowest-lying (3)IL-based excited states with lifetimes that can be tuned from 22 to 270 μs in fluid solution and from 44 to 3440 μs in glass at 77 K. To our knowledge, these excited-state lifetimes are the longest reported for Ru(II)-based dyads containing only one organic chromophore and lacking terminal diimine groups.

View Article and Find Full Text PDF

Two strategies are applied to mimic the ampholytic nature of the surfaces of half-generation PAMAM dendrimers and yet retain the very narrow dispersity inherent of triazine dendrimers. Both strategies start with a monodisperse, single-chemical entity, generation two triazine dendrimer presenting twelve surface amines that is available at the kilogram scale. The first method relies on reaction with methyl bromoacetate.

View Article and Find Full Text PDF

A series of dirhodium(II,II) complexes of the type cis-[Rh(2)(mu-O(2)CCH(3))(2)(dppn)(L)](2+), where dppn = benzo[i]dipyrido[3,2-a:2',3'-h]quinoxaline and L = 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-f:2'3'-h]quinoxaline (dpq, 3), dipyrido[3,2-a:2',3'-c]phenazine (dppz, 4), and dppn (5), were synthesized and their photophysical properties investigated to probe their potential usefulness as photodynamic therapy agents. The ability of the complexes to bind and photocleave DNA was also probed, along with their toxicity toward human skin cells in the dark and when irradiated with visible light. Nanosecond time-resolved absorption measurements established that the lowest energy excited state in 1-5 is dppn-localized (3)pipi* with lifetimes of 2.

View Article and Find Full Text PDF

Several mononuclear Ru(II) dyads possessing 1,10-phenanthroline-appended pyrenylethynylene ligands were synthesized, characterized, and evaluated for their potential in photobiological applications such as photodynamic therapy (PDT). These complexes interact with DNA via intercalation and photocleave DNA in vitro at submicromolar concentrations when irradiated with visible light (lambda(irr) > or = 400 nm). Such properties are remarkably sensitive to the position of the ethynylpyrenyl substituent on the 1,10-phenanthroline ring, with 3-substitution showing the strongest binding under all conditions and causing the most deleterious DNA damage.

View Article and Find Full Text PDF

The series of complexes cis-[Rh(2)(mu-O(2)CCH(3))(2)(dppn)(L)](2+), where dppn = benzo[i]dipyrido[3,2-a:2',3'-c] phenazine, and L = bpy (2,2'-bipyridine) (1), phen (1,10-phenanthroline) (2), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline) (3), dppz (dipyrido[3,2-a:2',3'-c]phenazine) (4), and dppn (5) were synthesized and their effect on the human cancer cells HeLa and COLO-316 was monitored. Complexes 1 and 2 interact with DNA through intercalation, whereas compounds 3-5 bind only electrostatically. It was found that the dirhodium complex 4 is the most effective compound at inhibiting cell viability of the human cancer cells HeLa and COLO-316.

View Article and Find Full Text PDF

Anionic dendrimers based on melamine with disulfide bonds at the core were prepared to investigate the solubility of these architectures, the ability of these molecules to solubilize pyrene as a model drug, and the ability of these architectures to undergo thiol-disulfide exchange. The ability to solubilize pyrene is directly correlated with molecular weight of the dendrimer-aggregation of dendrons does not occur. Thiol-disulfide exchange occurs rapidly using dithiothreitol as the reductant to yield dendrimers with thiol cores that can undergo oxidation in air to yield the original dendrimer.

View Article and Find Full Text PDF

The design, synthesis, characterization, and preliminary biological assessment of three dendrimers are reported. All three dendrimers, 1-3, present twelve paclitaxel groups linked by acylation of the 2'-hydroxyl group. The linker for dendrimers 2 and 3 also includes a disulfide.

View Article and Find Full Text PDF

The promising antitumor activity of dirhodium complexes has been known for over 30 years. There remains, however, a general lack of understanding of their activity in cellulo. In this study, we report the DNA interactions and activity in living cells of six monosubstituted dirhodium(II,II) complexes of general formula [Rh(2)(mu-O(2)CCH(3))(2)(eta(1)-O(2)CCH(3))(L)(CH(3)OH)](+), where L = bpy (2,2'-bipyridine) (1), phen (1,10-phenanthroline) (2), dpq (dipyrido[3,2-f:2',3'-h]quinoxaline) (3), dppz (dipyrido[3,2-a:2',3'-c]phenazine) (4), dppn (benzo[i]dipyrido[3,2-a:2',3'-c]phenazine) (5), and dap (4,7-dihydrodibenzo[de,gh][1,10]phenanthroline) (6).

View Article and Find Full Text PDF

The synthesis and characterization of second- and third-generation triazine dendrimers bearing carboxylic acid groups on the periphery are reported. These materials were synthesized by exhaustive succinylation of amine-terminated dendrimers. (1)H and (13)C NMR spectra are consistent with the desired products, but these techniques are limited by degeneracy in signals.

View Article and Find Full Text PDF

The series of dirhodium(II) complexes cis-[Rh(2)(O(2)CCH(3))(2)(R(1)R(2)dppz)(2)](2+) 1-6 (R(1) = R(2) = H, MeO, Me, Cl, NO(2) for 1-4, 6, respectively, and R(1)= H, R(2) = CN for 5), coordinated to R(1)R(2)dppz ligands with electron-donating or -withdrawing substituents at positions 7,8 of dppz (dppz = dipyrido[3,2-a:2',3'-c]phenazine), were synthesized and their effect on the transcription process in vitro was monitored. Complexes 1-6 are easily reduced, readily oxidize cysteine, and engage in redox-based reactions with T7-RNA Polymerase (T7-RNAP), which contains accessible thiol groups. Transcription is inhibited in vitro by 1-6 via formation of intra- and inter-T7-RNAP disulfide bonds that affect the enzyme critical sulfhydryl cysteine groups.

View Article and Find Full Text PDF

The ultrafast kinetics of ligand exchange of cis-[Ru(bpy)(2)(CH(3)CN)(2)](2+) were measured in H(2)O and CH(3)CN. The formation of the (3)MLCT excited-state and a five-coordinate intermediate are observed in both solvents within 2 ps after excitation (310 nm, fwhm approximately 300 fs). The (3)MLCT excited-state undergoes vibrational cooling (5-6 ps), then decays to regenerate the ground-state with a lifetime of approximately 50 ps.

View Article and Find Full Text PDF

A kilogram scale, divergent and iterative synthesis of a second generation, triazine dendrimer with 12 protected amines on the periphery using common laboratory equipment is reported. The route benefits from common reaction conditions, inexpensive reagents, and aqueous solvents. From the monomers, the desired product dendrimer--the last uncommitted intermediate that leads to a range of committed, generation three targets--can be obtained in 70% overall yield.

View Article and Find Full Text PDF

The DNA light-switch complex [Ru(bpy)2(tpphz)]2+ (1, bpy = 2,2'-bipyridine, tpphz = tetrapyrido[3,2-a:2',3'-c:3'',2''-h:2''',3'''-j]phenazine) is luminescent when bound to DNA and in organic solvents and weakly emissive in water. To date, light-switch behavior by transition metal complexes has generally been regarded as confirmation of DNA intercalation. In contrast, the present work demonstrates that the nonintercalating bimetallic complex [(bpy)2Ru(tpphz)Ru(bpy)2]4+ (2) behaves as a DNA light-switch.

View Article and Find Full Text PDF

Removal of methanol molecules from the interstices of a metal-organic framework based on a 2-D hexagonal Mn(II)-TCNQF(4) net results in stronger magnetic interactions and leads to a glassy magnetically ordered state; the magnetic behavior can be reversibly cycled upon solvation-desolvation of the material.

View Article and Find Full Text PDF

In the series Rh2(O2CR)4 (R=CH3, 1; R=CF3, 2), [Rh2(O2CR)2(phen)2]2+ (R=CH3, 3; R=CF3, 4), and [Rh2(O2CR)2(dppz)2]2+ (R=CH3, 5; R=CF3, 6), 2, 4, and 6 are twice as cytotoxic as 1, 3, and 5, respectively. The substitution reactions of 2 with 9-ethylguanine at various temperatures take place at faster rates than those of 1, and the activation energy Ea(1)=69+/-4 kJ/mol is twice Ea(2)=35+/-2 kJ/mol. The higher cytotoxicities of [Rh2(micro-O2CCH3)2(eta1-O2CCH3)L(MeOH)]+ (L=dppz, 7; L=dppn, 8) relative to [Rh2(micro-O2CCH3)2(bpy)L]2+ (L=dppz, 10; L=dppn, 11) are attributed to the labile equatorial groups in 7 and 8 not present in 10 and 11.

View Article and Find Full Text PDF

Reactions of Cu I salts with 1,4,5,8,9,12-hexaazatriphenylene (HAT) afford three types of cationic coordination polymers depending on the anion present in the reaction solution. In the crystal structure of {[Cu(HAT)][BF4]x1/3(C6H6)}infinity, (1), Cu ions and HAT molecules form extended layers that are best described as strongly distorted honeycomb nets. The space between the layers is occupied by [BF4]- anions and solvent molecules.

View Article and Find Full Text PDF

Reactions of 3,6-bis(2'-pyridyl)-1,2,4,5-tetrazine (bptz) and 3,6-bis(2'-pyridyl)-1,2-pyridazine (bppn) with the AgX salts (X = [PF6]-, [AsF6]-, [SbF6]-, and [BF4]-) afford complexes of different structural motifs depending on the pi-acidity of the ligand central ring and the outer-sphere anion. The bptz reactions lead to the polymeric [[Ag(bptz)][PF6]]infinity (1) and the dinuclear compounds [Ag2(bptz)2(CH3CN)2][PF6]2 (2) and [Ag2(bptz)2(CH3CN)2][AsF6]2 (3), as well as the propeller-type species [Ag2(bptz)3][AsF6]2 (4) and [Ag2(bptz)3][SbF6]2 (5a and 5b). Reactions of bppn with AgX produce the grid-type structures [Ag4(bppn)4][X]4 (6-9), regardless of the anion present.

View Article and Find Full Text PDF

Four complexes of the ligand 1,12-diazaperylene (DAP) have been prepared, [Ru(bpy)n(DAP)(3-n)]2+ where n = 0-2 and [Ru(DAP)3]2+. The [Ru(DAP)3]2+ complex was characterized by X-ray analysis and was found to exhibit the expected propeller-like structure with significant intermolecular pi-stacking interactions. The three Ru(II) complexes showed self-consistent optoelectronic properties with similar ligand-centered pi-pi* absorptions in the range of 333-468 nm and MLCT bands associated with the DAP which increased in intensity and decreased in energy as the number of DAP ligands varied from 1 to 3.

View Article and Find Full Text PDF

The emission of the DNA light-switch complex [Ru(bpy)2(tpphz)]2+ (bpy = 2,2'-bipyridine, tpphz = tetrapyrido[3,2-a:2',3'-c:3' ',2' '-h:2' '',3' ''-j]phenazine) can be reversibly turned ON and OFF over several cycles. The tpphz and taptp (taptp = 4,5,9,18-tetraazaphenanthreno[9,10-b] triphenylene) ligands in [Ru(bpy)2(tpphz)]2+ and [Ru(bpy)2(taptp)]2+, respectively, intercalate between the DNA bases, and a 50-fold increase in emission intensity of [Ru(bpy)2(tpphz)]2+ is observed upon DNA intercalation. The [Ru(bpy)2(tpphz)]2+ DNA light switch can be turned OFF statically in the presence of Co2+, Ni2+, and Zn2+, and the emission can be fully restored by the addition of EDTA.

View Article and Find Full Text PDF

Reactions of Fe(II) salts with the ligand 1,4,5,8,9,12-hexaazatriphenylene (HAT) led to the isolation and characterization of four new compounds: [Fe3(HAT)(H2O)12](SO4)3.3.3H2O (1), [Fe2(HAT)(SO4)(H2O)5](SO4).

View Article and Find Full Text PDF