Unmanned Aerial Vehicle (UAV)-type Quadrotors are highly nonlinear systems that are difficult to control and stabilize outdoors, especially in a windy environment. Many algorithms have been proposed to solve the problem of trajectory tracking using UAVs. However, current control systems face significant hurdles, such as parameter uncertainties, modeling errors, and challenges in windy environments.
View Article and Find Full Text PDFSensors (Basel)
September 2014
Although nonlinear H∞ (NH∞) filters offer good performance without requiring assumptions concerning the characteristics of process and/or measurement noises, they still require additional tuning parameters that remain fixed and that need to be determined through trial and error. To address issues associated with NH∞ filters, a new SINS/GPS sensor fusion scheme known as the Fuzzy Adaptive Nonlinear H∞ (FANH∞) filter is proposed for the Unmanned Aerial Vehicle (UAV) localization problem. Based on a real-time Fuzzy Inference System (FIS), the FANH∞ filter continually adjusts the higher order of the Taylor development thorough adaptive bounds and adaptive disturbance attenuation , which significantly increases the UAV localization performance.
View Article and Find Full Text PDF