Nanocomposite-parylene C (NCPC) thin films were deposited with a new technique based on the combination of chemical vapor deposition (CVD) for parylene C deposition and RF-magnetron sputtering for silver deposition. This method yields good dispersion of Ag-containing nanoparticles inside the parylene C polymer matrix. Film composition and structure were studied by using several techniques.
View Article and Find Full Text PDFAdvanced amorphous sub-nanometric laminates based on TiO and AlO were deposited by atomic layer deposition at low temperature. Low densities of 'slow' and 'fast' interface states are achieved with values of 3.96 · 10 cm and 4.
View Article and Find Full Text PDFACS Appl Mater Interfaces
November 2015
Capacitors with a dielectric material consisting of amorphous laminates of Al2O3 and TiO2 with subnanometer individual layer thicknesses can show strongly enhanced capacitance densities compared to the bulk or laminates with nanometer layer thickness. In this study, the structural and dielectric properties of such subnanometer laminates grown on silicon by state-of-the-art atomic layer deposition are investigated with varying electrode materials. The laminates show a dielectric constant reaching 95 combined with a dielectric loss (tan δ) of about 0.
View Article and Find Full Text PDFDielectric and electrical properties correlated with the structure analysis have been studied on 27% semicrystalline parylene-N (-H2C-C6H4-CH2-)n thin films. Transition-phase, AC- and DC-conduction mechanisms, and the MW-interfacial polarization were identified in parylene N at high temperature by experimental and theoretical investigations. The dielectric analysis based on the dc conductivity highlights a temperature of 230 °C as a transition temperature from the α-form to the β1-form.
View Article and Find Full Text PDFEur Phys J E Soft Matter
September 2014
Double-helix DNA molecules can be found under different conformational structures driven by ionic and hydration surroundings. Usually, only the B-form of DNA, which is the only form stable in aqueous solution, can be studied by dielectric measurements. Here, the dielectric responses of DNA molecules in the A- and B-form, oriented co-linearly within fibres assembled in a film have been analyzed.
View Article and Find Full Text PDFThe electrical conduction mechanisms of semicrystalline thermoplastic parylene C (-H(2)C-C(6)H(3)Cl-CH(2)-)(n) thin films were studied in large temperature and frequency regions. The alternative current (AC) electrical conduction in parylene C is governed by two processes which can be ascribed to a hopping transport mechanism: correlated barrier hopping (CBH) model at low [77-155 K] and high [473-533 K] temperature and the small polaron tunneling mechanism (SPTM) from 193 to 413 K within the framework of the universal law of dielectric response. The conduction mechanism is explained with the help of Elliot's theory, and the Elliot's parameters are determined.
View Article and Find Full Text PDF