Publications by authors named "Abdelhafidh Dhouib"

Anaerobic digestion (AD), being the most effective treatment method of waste activated sludge (WAS), allows for safe disposal. The present study deals with the electro-Fenton (EF) pretreatment for enhancing the WAS biogas potential with low-cost iron electrodes. The effect of pretreatment on the physicochemical characteristics of sludge was assessed.

View Article and Find Full Text PDF

Disintegration of municipal waste activated sludge (WAS) using thermo-alkaline (TA) and electro-Fenton (EF) methods was investigated and compared in terms of the efficiency of sludge solubilisation and enhancement of anaerobic biodegradability. Performance of organic matter solubilisation (soluble COD, proteins, polysaccharides) of sludge pretreated with EF was proved to be better than that with TA pretreatment, which resulted in the enhancement of anaerobic biodegradability. Comparison of results indicated that percentages of PN and PS release obtained after EF pretreatment (68.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how Tetraselmis marina accumulates lipids and pigments under different nutrient conditions.
  • During the first stage of growth, the microalga showed significant carotenoid and lipid production, but enhancing conditions with nitrogen and phosphorus led to increased biomass and specific lipid types.
  • The findings suggest T. marina has potential for use in feed, food, or biofuel production due to its favorable lipid profiles and productivity under nutrient-rich conditions.
View Article and Find Full Text PDF

Amphora subtropica and Dunaliella sp. isolated from Tunisian biotopes were retained for their high lipid contents. Respective optimized parameters for rapid growth were: pH 9 and 10, light period 21 and 24h and temperature 31 and 34°C, respectively.

View Article and Find Full Text PDF

Aims: The present study was undertaken to investigate the protective effect of lipid extract of Dunaliella sp. (LE) rich in polyunsaturated fatty acids (PUFA), against oxidative stress induced by nickel in experimental rats.

Methods: Our investigation evaluated the antioxidant activity of LE using both DPPH and NBT assays.

View Article and Find Full Text PDF

Microalgae as feedstock for biofuel production have attracted serious consideration as an important sustainable source of energy. For biodiesel production with microalgae, a series of consecutive processes should be performed as selection of adequate microalgal strains, mass culture, cell harvesting, oil extraction and transesterification. The aim of this study was to investigate the growth and lipid accumulation of a new isolated marine microalgal strain by optimizing culture medium composition and applying different stressful culture conditions.

View Article and Find Full Text PDF

Background: Coastal countries that suffer from a scarcity of water, such as Tunisia, have to cultivate marine microalgae on non-arable land in order to produce feedstock and overcome their demands of nutrition and energy. In this framework, a green microalga, CTM 20019, was isolated, identified as Picochlorum sp. and tested for its lipid production.

View Article and Find Full Text PDF

An extracellular alkaline elastase was produced from Pseudomonas aeruginosa CTM50182. It was chromatographically purified using HPLC and Mono Q Sepharose column. Matrix assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF/MS) analysis revealed that the purified enzyme (called AMPP) was a monomer with a molecular mass of 33,015.

View Article and Find Full Text PDF

The removal of toxic phenolic compounds from industrial wastewater is an important issue to be addressed. Their presence in water and soil has become a great environmental concern, and effective methods for their removal need to be addressed. The feasibility of applying laccases for the degradation of phenolic compounds has received increasing attention.

View Article and Find Full Text PDF

The purpose of the present study was to determine the effect of natural mediators on the stability of the Trametes trogii crude laccase in the process of decolourization of textile effluents. Acetosyringone allowed the highest wastewaters decolourization rate of 25%. At higher concentrations of acetosyringone, the relative activity of laccase decreased approximately by between 38% and 88% after 5 days of incubation.

View Article and Find Full Text PDF

A novel, lipid-degrading bacterium (strain AHD-1) was isolated from soil regularly contaminated with washing-machine wastewater in Sfax, Tunisia. When this strain was grown in a medium containing 2% triacylglycerol, the hydrolysis products were found to be diacylglycerols, monoacylglycerols and free fatty acids. This strain was an aerobic, mesophilic, Gram-negative, motile, non-sporulating bacterium, capable of growing optimally at pH 7 and 27 degrees C.

View Article and Find Full Text PDF

Decolourization and detoxification of a textile industry effluent by laccase from Trametes trogii in the presence and the absence of laccase mediators was investigated. Laccase alone was not able to decolourize the effluent efficiently even at the highest enzyme concentration tested: less than 10% decolourization was obtained with 9 U/mL reaction mixture. To enhance effluent decolourization, several potential laccase mediators were tested at concentrations ranging from 0 to 1mM.

View Article and Find Full Text PDF

The essential oils were obtained by hydro-distillation of the aerial part of Salvia officinalis L. cultivated in Sfax gardens, Tunisia. The obtained oils were analyzed by gas chromatography-mass spectrometry (GC-MS) and 44 compounds were identified.

View Article and Find Full Text PDF

Hazard assessments based on two measures of toxicity were conducted for the untreated olive mill wastewaters (U), untreated olive mill wastewaters organic extract (UOE), treated olive mill wastewaters (T), treated olive mill wastewaters organic extract (TOE) and extracts of soils ferti-irrigated with untreated (SU) and with treated olive mill wastewaters (ST). The measures of toxicity were achieved by the determination of the bioluminescence inhibition percent (I(B)%) of Vibrio fischeri and by the growth inhibition (GI) of Bacillus megaterium, Pseudomonas fluorescens and Escherichia coli. A bioluminescence inhibition of V.

View Article and Find Full Text PDF

The removal efficiencies of pathogens such as Salmonella (S), helminths ova (H), protozoan cysts (P), total coliforms (TC), faecal coliforms (FC) and faecal streptococci (FS) by three treatment processes: aerated lagoon (AL), activated sludge (AS) and anaerobic membrane bioreactor (MBR) were evaluated by means of standard microbiological numeration methods. The micro-toxicity and phyto-toxicity of wastewaters were monitored by LUMIStox and germination index (GI) of Lepidium sativum tests. The results of municipal wastewaters receiving industrial effluents such as Sfax and Mahres were compared with other municipal wastewaters receiving mainly domestic effluents such as Ksour-Essaf.

View Article and Find Full Text PDF

The effects of unprocessed olive mill wastewaters (OMW) on soil characteristics were investigated. Phenolic compounds levels in the treated soil were compared to those of a control soil profile. Results showed that OMW infiltration caused a modification of soil physicochemical characteristics.

View Article and Find Full Text PDF

We investigated the effect of untreated and biologically treated olive mill wastewater (OMW) spreading on the soil characteristics and the microbial communities. The water holding capacity, the salinity and the content of total organic carbon, humus, total nitrogen, phosphate and potassium increased when the spread amounts of the treated or untreated OMW increased. The OMW treated soil exhibited significantly higher respiration compared to the control soil.

View Article and Find Full Text PDF