Publications by authors named "Abdelbasset A Farahat"

The recognition of specific genomic arrangements by rationally designed small molecules is fundamental for the expansion of targeted gene expression. Here, we report the first X-ray crystal structures that demonstrate single G (guanine) recognition by a highly selective diamidine (DB2447) in a mixed DNA sequence. The study presents detailed structural information on the mechanism of single G recognition by D2447 and its various interactions in the DNA minor groove.

View Article and Find Full Text PDF

Transcription factor (TF) DNA-binding dynamics govern cell fate and identity. However, our ability to pharmacologically control TF localization is limited. Here we leverage chemically driven binding site restriction leading to robust and DNA-sequence-specific redistribution of PU.

View Article and Find Full Text PDF

In this study, the chemical investigation of (Zygophyllaceae) led to the identification of a new megastigmene derivative, tetraenone A ((2, 5, 6, 7)-2-hydroxy-5,6-dihydro-β-ionone) (), along with (3, 5, 6, 7)-3-hydroxy-5,6-epoxy-5,6-dihydro-β-ionone- (), 3,4-dihydroxy-cinnamyl alcohol-4-glucoside (), 3β,19α-dihydroxy-ursan-28-oic acid (), quinovic acid (), -coumaric acid (), and ferulic acid (), for the first time. The chemical structures of - were confirmed by analysis of their 1D and 2D NMR and HRESIMS spectra and by their comparison with the relevant literature. The absolute configurations of and were assigned based on NOESY interactions and ECD spectra.

View Article and Find Full Text PDF

The rational design of small molecules that target specific DNA sequences is a promising strategy to modulate gene expression. This report focuses on a diamidinobenzimidazole compound, whose selective binding to the minor groove of AT DNA sequences holds broad significance in the molecular recognition of AT-rich human promoter sequences. The objective of this study is to provide a more detailed and systematized understanding, at an atomic level, of the molecular recognition mechanism of different AT-specific sequences by a rationally designed minor groove binder.

View Article and Find Full Text PDF

The continuing need for the discovery of potent antibacterial agents against antibiotic-resistant pathogens is the driving force for many researchers to design and develop such agents. Herein, we report the design, synthesis, and biological evaluation of amidine derivatives as new antibacterial agents. Compound was the most active in this study against a wide range of antibiotic-resistant, and susceptible, Gram-positive, and Gram-negative bacterial strains.

View Article and Find Full Text PDF

The asymmetric unit of the title compound, CHNO, is composed of two independent mol-ecules with slightly different conformations. The extended structure features N-H⋯O hydrogen bonds as well as π-π inter-actions.

View Article and Find Full Text PDF

Coronaviruses, including SARS-CoV-2, SARS-CoV, MERS-CoV and influenza A virus, require the host proteases to mediate viral entry into cells. Rather than targeting the continuously mutating viral proteins, targeting the conserved host-based entry mechanism could offer advantages. Nafamostat and camostat were discovered as covalent inhibitors of TMPRSS2 protease involved in viral entry.

View Article and Find Full Text PDF

The usage of nanomaterials for rheumatoid arthritis (RA) treatment can improve bioavailability and enable selective targeting. The current study prepares and evaluates the in vivo biological effects of a novel hydroxyapatite/vitamin B nanoformula in Complete Freund's adjuvant-induced arthritis in rats. The synthesized nanoformula was characterized using XRD, FTIR, BET analysis, HERTEM, SEM, particle size, and zeta potential.

View Article and Find Full Text PDF

Combining the hybridization and repurposing strategies, six compounds from our in-house library and having a designed hybrid structure of MBX-1162, pentamidine and MMV688271 were repurposed as potential antibacterial agents. Among, compounds and elicited potential sub-µg ml activity against the high-priority antibiotic-resistant Gram-positive members of ESKAPE bacteria as well as antibiotic-susceptible Gram-positive bacteria. Furthermore, they showed potential low µg ml activity against the explored critical-priority antibiotic-resistant Gram-negative members of ESKAPE bacteria.

View Article and Find Full Text PDF

New analogs of the antiprotozoal agent Furamidine were prepared utilizing Stille coupling reactions and amidation of the bisnitrile intermediate using lithium bis-trimethylsilylamide. Both the phenyl groups and the furan moiety of furamidine were replaced by heterocycles including thiophene, selenophene, indole or benzimidazole. Based upon the ΔTm and the CD results, the new compounds showed strong binding to the DNA minor groove.

View Article and Find Full Text PDF

Selective spectrofluorometric sensing is introduced for the analysis of non-steroidal anti-androgens, darolutamide, and thalidomide in pharmaceutical preparations and biofluids. An organic fluorophore, 2,4,8,10-tetramethylpyrido[2',3':3,4]pyrazolo[1,5-a]pyrimidine 2 was synthesized in our laboratories by new simple methods to act as a fluorescent reagent for the analysis of the studied drugs. Elemental and spectral analyses were performed to approve the fluorophore structure.

View Article and Find Full Text PDF

Ken Breslauer began studies on the thermodynamics of small cationic molecules binding in the DNA minor groove over 30 years ago, and the studies reported here are an extension of those ground-breaking reports. The goals of this report are to develop a detailed understanding of the binding thermodynamics of pyridine-based sequence-specific minor groove binders that have different terminal cationic groups. We apply biosensor-surface plasmon resonance and ITC methods to extend the understanding of minor groove binders in two directions: (i) by using designed, heterocyclic dicationic minor groove binders that can incorporate a G•C base pair (bp), with flanking AT base pairs, into their DNA recognition site, and bind to DNA sequences specifically; and (ii) by using a range of flanking AT sequences to better define molecular recognition of the minor groove.

View Article and Find Full Text PDF

This report describes a breakthrough in a project to design minor groove binders to recognize any sequence of DNA. A key goal is to invent synthetic chemistry for compound preparation to recognize an adjacent GG sequence that has been difficult to target. After trying several unsuccessful compound designs, an -alkyl-benzodiimidazole structure was selected to provide two H-bond acceptors for the adjacent GG-NH groups.

View Article and Find Full Text PDF

Sequence selectivity is a critical attribute of DNA-binding ligands and underlines the need for detailed molecular descriptions of binding in representative sequence contexts. We investigated the binding and volumetric properties of DB1976, a model bis(benzimidazole)-selenophene diamidine compound with emerging therapeutic potential in acute myeloid leukemia, debilitating fibroses, and obesity-related liver dysfunction. To sample the scope of cognate DB1976 target sites, we evaluated three dodecameric duplexes spanning >10-fold in binding affinity.

View Article and Find Full Text PDF

The majority of current drugs against diseases, such as cancer, can bind to one or more sites in a protein and inhibit its activity. There are, however, well-known limits on the number of druggable proteins, and complementary current drugs with compounds that could selectively target DNA or RNA would greatly enhance the availability of cellular probes and therapeutic progress. We are focusing on the design of sequence-specific DNA minor groove binders that, for example, target the promoter sites of transcription factors involved in a disease.

View Article and Find Full Text PDF

A series of small diamidines with thiophene and modified N-alkylbenzimidazole σ-hole module represent specific binding to single G⋅C base pair (bp) DNA sequence. The variation of N-alkyl or aromatic rings were sensitive to microstructures of the DNA minor groove. Thirteen new compounds were synthesized to test their binding affinity and selectivity.

View Article and Find Full Text PDF

Most transcription factors were for a long time considered as undruggable targets because of the absence of binding pockets for direct targeting. HOXA9, implicated in acute myeloid leukemia, is one of them. To date, only indirect targeting of HOXA9 expression or multitarget HOX/PBX protein/protein interaction inhibitors has been developed.

View Article and Find Full Text PDF

Linear heterocyclic cations are interesting DNA minor groove ligands due to their lack of isohelical curvature classically associated with groove-binding compounds. We determined the DNA binding properties of four related dications harboring a linear indole-biphenyl core: the diamidine DB1883, a ditetrahydropyrimidine derivative (DB1804), and their monocationic counterparts (DB1944 and DB2627). These compounds exhibit heterogeneity in binding in accordance with their structures.

View Article and Find Full Text PDF

AT specific heterocyclic cations that bind in the DNA duplex minor groove have had major successes as cell and nuclear stains and as therapeutic agents which can effectively enter human cells. Expanding the DNA sequence recognition capability of the minor groove compounds could also expand their therapeutic targets and have an impact in many areas, such as modulation of transcription factor biological activity. Success in the design of mixed sequence binding compounds has been achieved with N-methylbenzimidazole ( N-MeBI) thiophenes which are preorganized to fit the shape of the DNA minor groove and H-bond to the -NH of G·C base pairs that project into the minor groove.

View Article and Find Full Text PDF

A novel series of indole and benzimidazole bichalcophene diamidine derivatives were prepared to study their antimicrobial activity against the tropical parasites causing African sleeping sickness and malaria. The dicyanoindoles needed to synthesize the target diamidines were obtained through Stille coupling reactions while the bis-cyanobenzimidazoles intermediates were made via condensation/cyclization reactions of different aldehydes with 4-cyano-1,2-diaminobenzene. Different amidine synthesis methodologies namely, lithium bis-trimethylsilylamide (LiN[Si(CH3)]) and Pinner methods were used to prepare the diamidines.

View Article and Find Full Text PDF

Intronic GGGGCC repeat expansions in are the most common known cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS), which are characterised by degeneration of cortical and motor neurons, respectively. Repeat expansions have been proposed to cause disease by both the repeat RNA forming foci that sequester RNA-binding proteins and through toxic dipeptide repeat proteins generated by repeat-associated non-ATG translation. GGGGCC repeat RNA folds into a G-quadruplex secondary structure, and we investigated whether targeting this structure is a potential therapeutic strategy.

View Article and Find Full Text PDF

The transcription factor PU.1 is often impaired in patients with acute myeloid leukemia (AML). Here, we used AML cells that already had low PU.

View Article and Find Full Text PDF

Given the limitations of current antileishmanial drugs and the utility of oral combination therapy for other infections, developing an oral combination against visceral leishmaniasis should be a high priority. combination studies with DB766 and antifungal azoles against intracellular showed that posaconazole and ketoconazole, but not fluconazole, enhanced DB766 potency. Pharmacokinetic analysis of DB766-azole combinations in uninfected Swiss Webster mice revealed that DB766 exposure was increased by higher posaconazole and ketoconazole doses, while DB766 decreased ketoconazole exposure.

View Article and Find Full Text PDF

A series of new coumarin containing compounds were synthesized from 4-bromomethylcoumarin derivatives and different heteroaromatic systems methylene thiolinker. Twenty-four compounds were screened biologically against two human tumor cell lines, breast carcinoma MCF-7 and hepatocellular carcinoma HePG-2, at the national cancer institute, Cairo, Egypt using 5-fluorouracil as standard drug. Compounds hh and showed strong activity against both MCF-7 and HepG-2 cell lines with being compound is the most active with IC values of 5.

View Article and Find Full Text PDF

The design and synthesis of compounds that target mixed, AT/GC, DNA sequences is described. The design concept connects two N-methyl-benzimidazole-thiophene single GC recognition units with a flexible linker that lets the compound fit the shape and twist of the DNA minor groove while covering a full turn of the double helix.

View Article and Find Full Text PDF