The recently introduced coati optimization algorithm suffers from drawbacks such as slow search velocity and weak optimization precision. An enhanced coati optimization algorithm called CMRLCCOA is proposed. Firstly, the Sine chaotic mapping function is used to initialize the CMRLCCOA as a way to obtain better-quality coati populations and increase the diversity of the population.
View Article and Find Full Text PDFThe energy management (EM) solution of the multi-microgrids (MMGs) is a crucial task to provide more flexibility, reliability, and economic benefits. However, the energy management (EM) of the MMGs became a complex and strenuous task with high penetration of renewable energy resources due to the stochastic nature of these resources along with the load fluctuations. In this regard, this paper aims to solve the EM problem of the MMGs with the optimal inclusion of photovoltaic (PV) systems, wind turbines (WTs), and biomass systems.
View Article and Find Full Text PDFDeploying distributed generators (DGs) supplied by renewable energy resources poses a significant challenge for efficient power grid operation. The proper sizing and placement of DGs, specifically photovoltaics (PVs) and wind turbines (WTs), remain crucial due to the uncertain characteristics of renewable energy. To overcome these challenges, this study explores an enhanced version of a meta-heuristic technique called the prairie dog optimizer (PDO).
View Article and Find Full Text PDFAgriculture plays a pivotal role in the economic development of a nation, but, growth of agriculture is affected badly by the many factors one such is plant diseases. Early stage prediction of these disease is crucial role for global health and even for game changers the farmer's life. Recently, adoption of modern technologies, such as the Internet of Things (IoT) and deep learning concepts has given the brighter light of inventing the intelligent machines to predict the plant diseases before it is deep-rooted in the farmlands.
View Article and Find Full Text PDFThe growing demand for solar energy conversion underscores the need for precise parameter extraction methods in photovoltaic (PV) plants. This study focuses on enhancing accuracy in PV system parameter extraction, essential for optimizing PV models under diverse environmental conditions. Utilizing primary PV models (single diode, double diode, and three diode) and PV module models, the research emphasizes the importance of accurate parameter identification.
View Article and Find Full Text PDFThe Artificial Electric Field Algorithm (AEFA) stands out as a physics-inspired metaheuristic, drawing inspiration from Coulomb's law and electrostatic force; however, while AEFA has demonstrated efficacy, it can face challenges such as convergence issues and suboptimal solutions, especially in high-dimensional problems. To overcome these challenges, this paper introduces a modified version of AEFA, named mAEFA, which leverages the capabilities of Lévy flights, simulated annealing, and the Adaptive -best Mutation and Natural Survivor Method (NSM) mechanisms. While Lévy flights enhance exploration potential and simulated annealing improves search exploitation, the Adaptive -best Mutation and Natural Survivor Method (NSM) mechanisms are employed to add more diversity.
View Article and Find Full Text PDFBiomimetics (Basel)
February 2024
A method for the approximate merging of disk Wang-Ball (DWB) curves based on the modified snake optimizer (BEESO) is proposed in this paper to address the problem of difficulties in the merging of DWB curves. By extending the approximate merging problem for traditional curves to disk curves and viewing it as an optimization problem, an approximate merging model is established to minimize the merging error through an error formulation. Considering the complexity of the model built, a BEESO with better convergence accuracy and convergence speed is introduced, which combines the snake optimizer (SO) and three strategies including bi-directional search, evolutionary population dynamics, and elite opposition-based learning.
View Article and Find Full Text PDFThe effective meta-heuristic technique known as the grey wolf optimizer (GWO) has shown its proficiency. However, due to its reliance on the alpha wolf for guiding the position updates of search agents, the risk of being trapped in a local optimal solution is notable. Furthermore, during stagnation, the convergence of other search wolves towards this alpha wolf results in a lack of diversity within the population.
View Article and Find Full Text PDFTo identify risk factors for smoking among pregnant women, and adverse perinatal outcomes among pregnant women. A case-control study of singleton full-term pregnant women who gave birth at a university hospital in Jordan in June 2020. Pregnant women were divided into three groups according to their smoking status, active, passive, and non-smokers.
View Article and Find Full Text PDFPlant image analysis is a significant tool for plant phenotyping. Image analysis has been used to assess plant trails, forecast plant growth, and offer geographical information about images. The area segmentation and counting of the leaf is a major component of plant phenotyping, which can be used to measure the growth of the plant.
View Article and Find Full Text PDFControlling the air-fuel ratio system (AFR) in lean combustion spark-ignition engines is crucial for mitigating emissions and addressing climate change. In this regard, this study proposes an enhanced version of the Aquila optimizer (ImpAO) with a modified elite opposition-based learning technique to optimize the feedforward (FF) mechanism and proportional-integral (PI) controller parameters for AFR control. Simulation results demonstrate ImpAO's outstanding performance compared to state-of-the-art algorithms.
View Article and Find Full Text PDFMortality from breast cancer (BC) is among the top causes of cancer death in women. BC can be effectively treated when diagnosed early, improving the likelihood that a patient will survive. BC masses and calcification clusters must be identified by mammography in order to prevent disease effects and commence therapy at an early stage.
View Article and Find Full Text PDFThe supply-demand-based optimization (SDO) is among the recent stochastic approaches that have proven its capability in solving challenging engineering tasks. Owing to the non-linearity and complexity of the real-world IEEE optimal power flow (OPF) in modern power system issues and like the existing algorithms, the SDO optimizer necessitates some enhancement to satisfy the required OPF characteristics integrating hybrid wind and solar powers. Thus, a SDO variant namely leader supply-demand-based optimization (LSDO) is proposed in this research.
View Article and Find Full Text PDFCustomer churn remains a critical challenge in telecommunications, necessitating effective churn prediction (CP) methodologies. This paper introduces the Enhanced Gradient Boosting Model (EGBM), which uses a Support Vector Machine with a Radial Basis Function kernel (SVM) as a base learner and exponential loss function to enhance the learning process of the GBM. The novel base learner significantly improves the initial classification performance of the traditional GBM and achieves enhanced performance in CP-EGBM after multiple boosting stages by utilizing state-of-the-art decision tree learners.
View Article and Find Full Text PDFThis study proposes an adaptable, bio-inspired optimization algorithm for Multi-Agent Space Exploration. The recommended approach combines a parameterized Aquila Optimizer, a bio-inspired technology, with deterministic Multi-Agent Exploration. Stochastic factors are integrated into the Aquila Optimizer to enhance the algorithm's efficiency.
View Article and Find Full Text PDFThis study assessed the impact of gross domestic product (GDP), education, natural resources, remittances, and financial inclusion on carbon emissions in G-11 countries from 1990 to 2021. Based on the negative impact of pollution and the need for sustainable development, this study examined factors affecting CO emissions in G-11 countries using non-linear panel ARDL model. The study found that a positive GDP shock increases CO emissions in the short and long term, while a negative shock decreases emissions in the short term and increases emissions in the long term.
View Article and Find Full Text PDFAquila Optimizer (AO) is a well-known nature-inspired optimization algorithm (NIOA) that was created in 2021 based on the prey grabbing behavior of Aquila. AO is a population-based NIOA that has demonstrated its effectiveness in the field of complex and nonlinear optimization in a short period of time. As a result, the purpose of this study is to provide an updated survey on the topic.
View Article and Find Full Text PDFThis paper discusses the merging of two optimization algorithms, atom search optimization and particle swarm optimization, to create a hybrid algorithm called hybrid atom search particle swarm optimization (h-ASPSO). Atom search optimization is an algorithm inspired by the movement of atoms in nature, which employs interaction forces and neighbor interaction to guide each atom in the population. On the other hand, particle swarm optimization is a swarm intelligence algorithm that uses a population of particles to search for the optimal solution through a social learning process.
View Article and Find Full Text PDFWater is a precious resource for agriculture and most of the land is irrigated by tube wells. Diesel engines and electricity-operated pumps are widely used to fulfill irrigation water requirements; such conventional systems are inefficient and costly. With rising concerns about global warming, it is important to choose renewable energy source.
View Article and Find Full Text PDFThe Aquila optimizer (AO) is a recently developed swarm algorithm that simulates the hunting behavior of Aquila birds. In complex optimization problems, an AO may have slow convergence or fall in sub-optimal regions, especially in high complex ones. This paper tries to overcome these problems by using three different strategies: restart strategy, opposition-based learning and chaotic local search.
View Article and Find Full Text PDFCancer can be considered as one of the leading causes of death widely. One of the most effective tools to be able to handle cancer diagnosis, prognosis, and treatment is by using expression profiling technique which is based on microarray gene. For each data point (sample), gene data expression usually receives tens of thousands of genes.
View Article and Find Full Text PDFThe lightning search algorithm (LSA) is a novel meta-heuristic optimization method, which is proposed in 2015 to solve constraint optimization problems. This paper presents a comprehensive survey of the applications, variants, and results of the so-called LSA. In LSA, the best-obtained solution is defined to improve the effectiveness of the fitness function through the optimization process by finding the minimum or maximum costs to solve a specific problem.
View Article and Find Full Text PDF