Publications by authors named "Abdel-Monem El-Sharkawy"

Purpose: The monitoring and management of radio frequency (RF) exposure is critical for ensuring magnetic resonance imaging (MRI) safety. Commercial MRI scanners can overestimate specific absorption rates (SAR) and improperly restrict clinical MRI scans or the application of new MRI sequences, while underestimation of SAR can lead to tissue heating and thermal injury. Accurate scanner-independent RF dosimetry is essential for measuring actual exposure when SAR is critical for ensuring regulatory compliance and MRI safety, for establishing RF exposure while evaluating interventional leads and devices, and for routine MRI quality assessment by medical physicists.

View Article and Find Full Text PDF

Practical noninvasive methods for the measurement of absolute metabolite concentrations are key to the assessment of the depletion of myocardial metabolite pools which occurs with several cardiac diseases, including infarction and heart failure. Localized MRS offers unique noninvasive access to many metabolites, but is often confounded by nonuniform sensitivity and partial volume effects in the large, poorly defined voxels commonly used for the detection of low-concentration metabolites with surface coils. These problems are exacerbated at higher magnetic field strengths by greater radiofrequency (RF) field inhomogeneity and differences in RF penetration with heteronuclear concentration referencing.

View Article and Find Full Text PDF

Improving the signal-to-noise-ratio (SNR) of magnetic resonance imaging (MRI) using denoising techniques could enhance their value, provided that signal statistics and image resolution are not compromised. Here, a new denoising method based on spectral subtraction of the measured noise power from each signal acquisition is presented. Spectral subtraction denoising (SSD) assumes no prior knowledge of the acquired signal and does not increase acquisition time.

View Article and Find Full Text PDF

Purpose: To determine the minimal image quality needed to preserve diagnostic performance relative to arthroscopy in the knee.

Materials And Methods: Synthetic noise was added to images from clinical MRI scans (three-dimensional SPACE pulse sequence; Siemens) from five patients who had undergone knee MRI with arthroscopic follow-up, resulting in 25 simulated sets of images with standardized signal-to-noise ratios (SNRs) of 1, 2, 5, 10, or 20. All cases were scored by four musculoskeletal radiologists progressing from low to high SNR and grading all cartilage surfaces, major ligaments and menisci on a 5-point scale.

View Article and Find Full Text PDF

Purpose: Accurate measurements of the RF power delivered during clinical MRI are essential for safety and regulatory compliance, avoiding inappropriate restrictions on clinical MRI sequences, and for testing the MRI safety of peripheral and interventional devices at known RF exposure levels. The goal is to make independent RF power measurements to test the accuracy of scanner-reported specific absorption rate (SAR) over the extraordinary range of operating conditions routinely encountered in MRI.

Methods: A six channel, high dynamic range, real-time power profiling system was designed and built for monitoring power delivery during MRI up to 440 MHz.

View Article and Find Full Text PDF

The loopless antenna magnetic resonance imaging detector is comprised of a tuned coaxial cable with an extended central conductor that can be fabricated at submillimeter diameters for interventional use in guidewires, catheters, or needles. Prior work up to 4.7 T suggests a near-quadratic gain in signal-to-noise ratio with field strength and safe operation at 3 T.

View Article and Find Full Text PDF

The creatine kinase (CK) reaction is central to muscle energetics, buffering ATP levels during periods of intense activity via consumption of phosphocreatine (PCr). PCr is believed to serve as a spatial shuttle of high-energy phosphate between sites of energy production in the mitochondria and sites of energy utilization in the myofibrils via diffusion. Knowledge of the diffusion coefficient of PCr (D(PCr)) is thus critical for modeling and understanding energy transport in the myocyte, but D(PCr) has not been measured in humans.

View Article and Find Full Text PDF

Human cardiac phosphorus MR saturation transfer experiments to quantify creatine kinase forward rate constants (k(f)) have previously been performed at 1.5 T. Such experiments could benefit from increased signal-to-noise ratio (SNR) and spectral resolution at 3 T.

View Article and Find Full Text PDF

Temperature detection using microwave radiometry has proven value for noninvasively measuring the absolute temperature of tissues inside the body. However, current clinical radiometers operate in the gigahertz range, which limits their depth of penetration. We have designed and built a noninvasive radiometer which operates at radio frequencies (64 MHz) with ∼100-kHz bandwidth, using an external RF loop coil as a thermal detector.

View Article and Find Full Text PDF

The homogeneity and stability of the static magnetic field are of paramount importance to the accuracy of MR procedures that are sensitive to phase errors and magnetic field inhomogeneity. It is shown that intense gradient utilization in clinical horizontal-bore superconducting MR scanners of three different vendors results in main magnetic fields that vary on a long time scale both spatially and temporally by amounts of order 0.8-2.

View Article and Find Full Text PDF

Previous studies have confirmed the possibility of using an intravascular MR imaging guidewire (MRIG) as a heating source to enhance vascular gene transfection/expression. This motivated us to develop a new intravascular system that can perform MR imaging, radiofrequncy (RF) heating, and MR temperature monitoring simultaneously in an MR scanner. To validate this concept, a series of mathematical simulations of RF power loss along a 0.

View Article and Find Full Text PDF