Background: Endoplasmic reticulum (ER) and mitochondria have been implicated in the pathology of renal ischemia/reperfusion (I/R). In the present study, we investigated whether the use of ischemic postconditioning (IPostC) and trimetazidine (TMZ) separately or combined could reduce ER stress and mitochondria damage after renal ischemia.
Methods: Kidneys of Wistar rats were subjected to 60-min of warm ischemia followed by 120-min of reperfusion (I/R group, n = 6), or to 6 cycles of ischemia/reperfusion (10-s each cycle) just after 60-min of warm ischemia (IPostC group, n = 6), or to i.
Background: Although recent studies indicate that renal ischemic preconditioning (IPC) protects the kidney from ischemia-reperfusion (I/R) injury, the precise protective mechanism remains unclear. In the current study, we investigated whether early IPC could upregulate hypoxia inducible transcription factor-1α (HIF-1α) expression and could reduce endoplasmic reticulum (ER) stress after renal I/R and whether pharmacological inhibition of nitric oxide (NO) production would abolish these protective effects.
Methods: Kidneys of Wistar rats were subjected to 60 min of warm ischemia followed by 120 min of reperfusion (I/R group), or to 2 preceding cycles of 5 min ischemia and 5 min reperfusion (IPC group), or to intravenously injection of NG-nitro-L-arginine methylester (L-NAME, 5 mg/kg) 5 min before IPC (L-NAME+IPC group).
The aim of the present study is to evaluate the effects of diet enriched with dietary fiber of barley variety "Rihane" and azoxymethane on serum and liver lipid variables in male rats. Forty male rats were divided into four groups and fed on control diet or experimental diet that contained control enriched with dietary fiber of barley variety "Rihane". Animals were injected with saline (controls) or azoxymethane (20 mg/kg body weight s.
View Article and Find Full Text PDF