Publications by authors named "Abdel-Hakim Bouzid"

Bolted joints, prevalent in industrial applications for component fastening, are susceptible to self-loosening-a critical issue resulting in a gradual reduction in clamping force. Gaining insight into the underlying mechanisms of self-loosening is crucial. While prior research has largely focused on evaluating component stiffness, limited attention has been given to its impact on the self-loosening behavior of bolted joints under transverse cyclic loading.

View Article and Find Full Text PDF

In engineering, the stress state of expanded tubes is crucial for ensuring structural integrity and preventing stress corrosion cracking. The analysis of stresses and strains in tubes subjected to mechanical expansion using an ogive bullet is essential, yet existing theoretical methods for estimating the stress distributions, especially with spherical and ogive shapes, are sparse. This study explores the expansion of 3/8 inch copper and stainless-steel tubes using an expanding bullet, where tangential and longitudinal strains are measured.

View Article and Find Full Text PDF

Digital Twin (DT) aims to provide industrial companies with an interface to visualize, analyze, and simulate the production process, improving overall performance. This paper proposes to extend existing DT by adding a complementary methodology to make it suitable for process supervision. To implement our methodology, we introduce a novel framework that identifies, collects, and analyses data from the production system, enhancing DT functionalities.

View Article and Find Full Text PDF

The characterization of thermal ratcheting behavior of high density polyethylene (HDPE) material coupled with compressive creep is presented. The research explores the adverse influence of thermal cycling on HDPE material properties under the effect of compressive load, number of thermal cycles, creep time period, and thermal ratcheting temperature range. The compressive creep analysis of HDPE shows that the magnitude of creep strain increases with increase in magnitude of applied load and temperature, respectively.

View Article and Find Full Text PDF

Studies on intervertebral disk (IVD) response to various loads and postures are essential to understand disk's mechanical functions and to suggest preventive and corrective actions in the workplace. The experimental and finite-element (FE) approaches are well-suited for these studies, but validating their findings is difficult, partly due to the lack of alternative methods. Analytical modeling could allow methodological triangulation and help validation of FE models.

View Article and Find Full Text PDF

The objective of this study is to develop an analytical model to predict the stresses and displacements in the lamellae of the intervertebral disc subjected to a compressive force. This is achieved by developing a model based on membrane theory combined to large deformation multishell structural behavior. Equations for longitudinal and circumferential stresses are formulated for each lamella of the anulus fibrosus.

View Article and Find Full Text PDF