Publications by authors named "Abdel Aziz Taha"

Background: Arterial brain vessel segmentation allows utilising clinically relevant information contained within the cerebral vascular tree. Currently, however, no standardised performance measure is available to evaluate the quality of cerebral vessel segmentations. Thus, we developed a performance measure selection framework based on manual visual scoring of simulated segmentation variations to find the most suitable measure for cerebral vessel segmentation.

View Article and Find Full Text PDF

Average Hausdorff distance is a widely used performance measure to calculate the distance between two point sets. In medical image segmentation, it is used to compare ground truth images with segmentations allowing their ranking. We identified, however, ranking errors of average Hausdorff distance making it less suitable for applications in segmentation performance assessment.

View Article and Find Full Text PDF

Brain vessel status is a promising biomarker for better prevention and treatment in cerebrovascular disease. However, classic rule-based vessel segmentation algorithms need to be hand-crafted and are insufficiently validated. A specialized deep learning method-the U-net-is a promising alternative.

View Article and Find Full Text PDF

In the original version of this Article the values in the rightmost column of Table 1 were inadvertently shifted relative to the other columns. This has now been corrected in the PDF and HTML versions of the Article.

View Article and Find Full Text PDF

International challenges have become the standard for validation of biomedical image analysis methods. Given their scientific impact, it is surprising that a critical analysis of common practices related to the organization of challenges has not yet been performed. In this paper, we present a comprehensive analysis of biomedical image analysis challenges conducted up to now.

View Article and Find Full Text PDF

Variations in the shape and appearance of anatomical structures in medical images are often relevant radiological signs of disease. Automatic tools can help automate parts of this manual process. A cloud-based evaluation framework is presented in this paper including results of benchmarking current state-of-the-art medical imaging algorithms for anatomical structure segmentation and landmark detection: the VISCERAL Anatomy benchmarks.

View Article and Find Full Text PDF

The Hausdorff distance (HD) between two point sets is a commonly used dissimilarity measure for comparing point sets and image segmentations. Especially when very large point sets are compared using the HD, for example when evaluating magnetic resonance volume segmentations, or when the underlying applications are based on time critical tasks, like motion detection, then the computational complexity of HD algorithms becomes an important issue. In this paper we propose a novel efficient algorithm for computing the exact Hausdorff distance.

View Article and Find Full Text PDF

Background: Medical Image segmentation is an important image processing step. Comparing images to evaluate the quality of segmentation is an essential part of measuring progress in this research area. Some of the challenges in evaluating medical segmentation are: metric selection, the use in the literature of multiple definitions for certain metrics, inefficiency of the metric calculation implementations leading to difficulties with large volumes, and lack of support for fuzzy segmentation by existing metrics.

View Article and Find Full Text PDF