Objective: Segmentation of individual thigh muscles in MRI images is essential for monitoring neuromuscular diseases and quantifying relevant biomarkers such as fat fraction (FF). Deep learning approaches such as U-Net have demonstrated effectiveness in this field. However, the impact of reducing neural network complexity remains unexplored in the FF quantification in individual muscles.
View Article and Find Full Text PDFThe near-field interaction between quantum emitters, governed by Förster resonance energy transfer (FRET), plays a pivotal role in nanoscale energy transfer mechanisms. However, FRET measurements in the optical regime are challenging as they require nanoscale control of the position and orientation of the emitters. To overcome these challenges, microwave measurements were proposed for enhanced spatial resolution and precise orientation control.
View Article and Find Full Text PDFPurpose: Testing an RF coil prototype on subjects involves laborious verifications to ensure its safety. In particular, it requires preliminary electromagnetic simulations and their validations on phantoms to accurately predict the specific absorption rate (SAR). For coil design validation with a simpler safety procedure, the restricted SAR (rS) mode is proposed, enabling representative first experiments in vivo.
View Article and Find Full Text PDFPurpose: We propose a comprehensive workflow to design and build fully customized dense receive arrays for MRI, providing prediction of SNR and g-factor. Combined with additive manufacturing, this method allows an efficient implementation for any arbitrary loop configuration. To demonstrate the methodology, an innovative two-layer, 32-channel receive array is proposed.
View Article and Find Full Text PDFPurpose: The acquisition of accurate B maps is critical for parallel transmit techniques (pTx). The presaturated turboFLASH (satTFL) method has been widely used in combination with interferometric encoding to provide robust and fast B maps. However, typical encodings, mostly evaluated on brain, do not necessarily fit all coils and organs.
View Article and Find Full Text PDFPurpose: The use of dielectric pads to redistribute the radiofrequency fields is currently a popular solution for 7 T MRI practical applications, especially in brain imaging. In this work, we tackle several downsides of the previous generation of dielectric pads. This new silicon carbide recipe makes them MR invisible and greatly extends the performance lifespan.
View Article and Find Full Text PDFPurpose: Radiofrequency field inhomogeneity is a significant issue in imaging large fields of view in high- and ultrahigh-field MRI. Passive shimming with coupled coils or dielectric pads is the most common approach at 3 T. We introduce and test light and compact metasurface, providing the same homogeneity improvement in clinical abdominal imaging at 3 T as a conventional dielectric pad.
View Article and Find Full Text PDFIn this paper we address the possibility to perform imaging of two samples within the same acquisition time using coupled ceramic resonators and one transmit/receive channel. We theoretically and experimentally compare the operation of our ceramic dual-resonator probe with a wire-wound solenoid probe, which is the standard probe used in ultrahigh-field magnetic resonance microscopy. We show that due to the low-loss ceramics used to fabricate the resonators, and a favorable distribution of the electric field within the conducting sample, a dual probe, which contains two samples, achieves an SNR enhancement by a factor close to the square root of 2 compared with a solenoid optimized for one sample.
View Article and Find Full Text PDFWe study, both theoretically and experimentally, tunable metasurfaces supporting sharp Fano-resonances inspired by optical bound states in the continuum. We explore the use of arsenic trisulfide (a photosensitive chalcogenide glass) having optical properties which can be finely tuned by light absorption at the post-fabrication stage. We select the resonant wavelength of the metasurface corresponding to the energy below the arsenic trisulfide bandgap, and experimentally control the resonance spectral position via exposure to the light of energies above the bandgap.
View Article and Find Full Text PDFPreclinical MR applications at 17.2 T can require field of views on the order of a few square centimeters. This is a challenging task as the proton Larmor frequency reaches 730 MHz.
View Article and Find Full Text PDFThe spatial resolution and signal-to-noise ratio (SNR) attainable in magnetic resonance microscopy (MRM) are limited by intrinsic probe losses and probe-sample interactions. In this work, the possibility to exceed the SNR of a standard solenoid coil by more than a factor-of-two is demonstrated theoretically and experimentally. This improvement is achieved by exciting the first transverse electric mode of a low-loss ceramic resonator instead of using the quasi-static field of the metal-wire solenoid coil.
View Article and Find Full Text PDFEarlier work on RF metasurfaces for preclinical MRI has targeted applications such as whole-body imaging and dual-frequency coils. In these studies, a nonresonant loop was used to induce currents into a metasurface that was operated as a passive inductively powered resonator. However, as we show in this study, the strategy of using a resonant metasurface reduces the impact of the loop on the global performance of the assembled coil.
View Article and Find Full Text PDFPurpose: To design and test an RF-coil based on two orthogonal eigenmodes in a pair of coupled dipoles, for 7 Tesla body imaging with improved SAR, called dual-mode dipole.
Methods: The proposed coil consists of two dipoles and creates two orthogonal field distributions in a sample (the even and odd modes). A coupler used to excite the modes was miniaturized with the conductor track routing technique.
In this paper, we propose, design and test a new dual-nuclei RF-coil inspired by wire metamaterial structures. The coil operates as a result of resonant excitation of hybridized eigenmodes in multimode flat periodic structures comprising several coupled thin metal strips. It was shown that the field distribution of the coil (i.
View Article and Find Full Text PDFThis paper reports a fishnet hyperbolic metamaterial that mimics the electromagnetic properties of magnetically confined plasma. These electromagnetic properties are strongly anisotropic and different from any conventional material, therefore cannot be mimicked by bulk materials. The structure is made of a stack of thin copper grids spaced by Rohacell foam.
View Article and Find Full Text PDFPurpose: Perovskites are greatly used nowadays in many technological applications because of their high permittivity, more specifically in the form of aqueous solutions, for MRI dielectric shimming. In this study, full dielectric characterizations of highly concentrated CaTiO /BaTiO water mixtures were carried out and new permittivity maxima was reached.
Methods: Permittivity measurements were done on aqueous solutions from 0%v/v to dry powder.
Parallel transmission is a very promising method to tackle B field inhomogeneities at ultrahigh field in magnetic resonant imaging (MRI). This technique is however limited by the mutual coupling between the radiating elements. Here we propose to solve this problem by designing a passive magneto-electric resonator that we here refer to as stacked magnetic resonator (SMR).
View Article and Find Full Text PDFWe describe two experiments demonstrating that a cylindrical cloak formerly introduced for linear surface liquid waves works equally well for sound and electromagnetic waves. This structured cloak behaves like an acoustic cloak with an effective anisotropic density and an electromagnetic cloak with an effective anisotropic permittivity, respectively. Measured forward scattering for pressure and magnetic fields are in good agreement and provide first evidence of broadband cloaking.
View Article and Find Full Text PDFWe consider the cloaking properties of electromagnetic wired media deduced from arbitrary coordinate transformations. We propose an interpretation of invisibility via sub-wavelength imaging features. The quality of cloaking is assessed by the level of deformation of the image of a P-shaped source through the stretched wired media: the lesser the image deformation, the more effective the cloaking.
View Article and Find Full Text PDFWe demonstrate experimentally and theoretically that a local excitation of a single scatterer of relative dielectric permittivity ε = 6 permits to excite broad dipolar and quadrupolar electric and magnetic resonances that shape the emission pattern in an unprecedented way. By suitably positioning the feed with respect to the sphere at a λ/3 distance, this compact antenna is able to spectrally sort the electromagnetic emission either in the forward or in the backward direction, together with a high gain in directivity. Materials with ε = 6 can be found in the whole spectrum of frequencies promising Mie antennas to become an enabling technology in numbers of applications, ranging from quantum single photon sources to telecommunications.
View Article and Find Full Text PDFWe present the first experimental demonstration of a high-directivity using a mu and epsilon near zero (MENZ) metamaterial. We use the hybridization principles to design a planar MENZ structure based on the fishnet unit cell. Resonant mode engineering achieves an effective permittivity and permeability that approaches zeros around 10.
View Article and Find Full Text PDFWe present a study of the optical properties of three-armed square nanospirals made of silver and realized as nanostructured thin films with Glancing Angle Deposition. Calculation of current flows in the nanospirals show excited resonant modes resembling those observed in U-shaped resonators. Four principal resonances were determined: near 200 THz and 480 THz for one polarization and 250 THz and 650 THz for the polarization orthogonal to the first one.
View Article and Find Full Text PDF