Background: Generating polygenic risk scores for diseases and complex traits requires high quality GWAS summary statistic files. Often, these files can be difficult to acquire either as a result of unshared or incomplete data. To date, bioinformatics tools which focus on restoring missing columns containing identification and association data are limited, which has the potential to increase the number of usable GWAS summary statistics files.
View Article and Find Full Text PDFWhole-genome data has become significantly more accessible over the last two decades. This can largely be attributed to both reduced sequencing costs and imputation models which make it possible to obtain nearly whole-genome data from less expensive genotyping methods, such as microarray chips. Although there are many different approaches to imputation, the Hidden Markov Model (HMM) remains the most widely used.
View Article and Find Full Text PDF