Publications by authors named "Abdallah Ammar"

Although selected configuration interaction (SCI) algorithms can tackle much larger Hilbert spaces than the conventional full CI method, the scaling of their computational cost with respect to the system size remains inherently exponential. In addition, inaccuracies in describing the correlation hole at small interelectronic distances lead to the slow convergence of the electronic energy relative to the size of the one-electron basis set. To alleviate these effects, we show that the non-Hermitian, transcorrelated (TC) version of SCI significantly compactifies the determinant space, allowing us to reach a given accuracy with a much smaller number of determinants.

View Article and Find Full Text PDF

The cumulant expansion of the Green's function is a computationally efficient beyond-GW approach renowned for its significant enhancement of satellite features in materials. In contrast to the ubiquitous GW approximation of many-body perturbation theory, cumulant expansions performed on top of GW (GW + C) have demonstrated the capability to handle multi-particle processes by incorporating higher-order correlation effects or vertex corrections, yielding better agreements between experiment and theory for satellite structures. While widely employed in condensed matter physics, very few applications of GW + C have been published on molecular systems.

View Article and Find Full Text PDF

Due to the infinite summation of bubble diagrams, the GW approximation of Green's function perturbation theory has proven particularly effective in the weak correlation regime, where this family of Feynman diagrams is important. However, the performance of GW in multireference molecular systems, characterized by strong electron correlation, remains relatively unexplored. In the present study, we investigate the ability of GW to handle closed-shell multireference systems in their singlet ground state by examining four paradigmatic scenarios.

View Article and Find Full Text PDF

In this work, we develop a mathematical framework for a selected configuration interaction (SCI) algorithm within a bi-orthogonal basis for transcorrelated (TC) calculations. The bi-orthogonal basis used here serves as the equivalent of the standard Hartree-Fock (HF) orbitals. However, within the context of TC, it leads to distinct orbitals for the left and right vectors.

View Article and Find Full Text PDF

We introduce a novel three-body correlation factor that is designed to vanish in the core region around each nucleus and approach a universal two-body correlation factor for valence electrons. The transcorrelated Hamiltonian is used to optimize the orbitals of a single Slater determinant within a biorthonormal framework. The Slater-Jastrow wave function is optimized on a set of atomic and molecular systems containing both second-row elements and 3d transition metal elements.

View Article and Find Full Text PDF

TREXIO is an open-source file format and library developed for the storage and manipulation of data produced by quantum chemistry calculations. It is designed with the goal of providing a reliable and efficient method of storing and exchanging wave function parameters and matrix elements, making it an important tool for researchers in the field of quantum chemistry. In this work, we present an overview of the TREXIO file format and library.

View Article and Find Full Text PDF

In this work, we present an extension of popular selected configuration interaction (SCI) algorithms to the Transcorrelated (TC) framework. Although we used in this work the recently introduced one-parameter correlation factor [E. Giner, J.

View Article and Find Full Text PDF

We present a new method for the optimization of large configuration interaction (CI) expansions in the quantum Monte Carlo (QMC) framework. The central idea here is to replace the nonorthogonal variational optimization of CI coefficients performed in usual QMC calculations by an orthogonal non-Hermitian optimization thanks to the so-called transcorrelated (TC) framework, the two methods yielding the same results in the limit of a complete basis set. By rewriting the TC equations as an effective self-consistent Hermitian problem, our approach requires the sampling of a single quantity per Slater determinant, leading to minimal memory requirements in the QMC code.

View Article and Find Full Text PDF

We develop and implement a Gaussian approach to calculate partial cross-sections and asymmetry parameters for molecular photoionization. Optimal sets of complex Gaussian-type orbitals (cGTOs) are first obtained by nonlinear optimization, to best fit sets of Coulomb or distorted continuum wave functions for relevant orbital quantum numbers. This allows us to represent the radial wavefunction for the outgoing electron with accurate cGTO expansions.

View Article and Find Full Text PDF

We implement a full nonlinear optimization method to fit continuum states with complex Gaussians. The application to a set of regular scattering Coulomb functions allows us to validate the numerical feasibility, to explore the range of convergence of the approach, and to demonstrate the relative superiority of complex over real Gaussian expansions. We then consider the photoionization of atomic hydrogen, and ionization by electron impact in the first Born approximation, for which the closed form cross sections serve as a solid benchmark.

View Article and Find Full Text PDF