Publications by authors named "Abdalla R Nassar"

This letter reports on the integration of eight ultrasonic transducers into a build substrate for individual in-process monitoring of eight parts fabricated using powder bed fusion additive manufacturing. Ultrasound is shown to be able to sense poor fusion of parts to the substrate and also sensitivity to porosity. This technique demonstrates the utility of ultrasound as one of a few techniques able to interrogate the volume of additively manufactured parts during the process.

View Article and Find Full Text PDF

Quality is a key determinant in deploying new processes, products, or services and influences the adoption of emerging manufacturing technologies. The advent of additive manufacturing (AM) as a manufacturing process has the potential to revolutionize a host of enterprise-related functions from production to the supply chain. The unprecedented level of design flexibility and expanded functionality offered by AM, coupled with greatly reduced lead times, can potentially pave the way for mass customization.

View Article and Find Full Text PDF

Control of the geometric accuracy of a metal deposit is critical in the repair and fabrication of complex components through Directed Energy Deposition (DED). This paper developed and experimentally evaluated a model-based feedforward control of laser power with the objective of achieving the targeted part height in DED. Specifically, based on the dynamic model of melt-pool geometry derived from our prior work, a nonlinear inverse-dynamics controller was derived in a hatch-by-hatch, layer-by-layer manner to modulate the laser power such that the melt-pool height was regulated during the simulated build process.

View Article and Find Full Text PDF

Ejecta with a size much larger than the mean particle size of feedstock powder have been observed in powder bed fusion additive manufacturing, both during post-process sieving and embedded within built components. However, their origin has not been adequately explained. Here, we test a hypothesis on the origin of large (much larger than the mass-median-diameter of feedstock powder) ejecta-that, in part, they result from stochastic, inelastic collisions of ejecta and coalescence of partially-sintered agglomerates.

View Article and Find Full Text PDF