Background: A timely diagnosis of Alzheimer's disease (AD) is crucial to obtain more practical treatments. In this article, a novel approach using Auto-Encoder Neural Networks (AENN) for early detection of AD was proposed.
Method: The proposed method mainly deals with the classification of multimodal data and the imputation of missing data.
In the past decade, many studies have been conducted to advance computer-aided systems for Alzheimer's disease (AD) diagnosis. Most of them have recently developed systems concentrated on extracting and combining features from MRI, PET, and CSF. For the most part, they have obtained very high performance.
View Article and Find Full Text PDFThe recent increase in the number of videos available in cyberspace is due to the availability of multimedia devices, highly developed communication technologies, and low-cost storage devices. These videos are simply stored in databases through text annotation. Content-based video browsing and retrieval are inefficient due to the method used to store videos in databases.
View Article and Find Full Text PDFThe structure and appearance of the blood vessel network in retinal fundus images is an essential part of diagnosing various problems associated with the eyes, such as diabetes and hypertension. In this paper, an automatic retinal vessel segmentation method utilizing matched filter techniques coupled with an AdaBoost classifier is proposed. The fundus image is enhanced using morphological operations, the contrast is increased using contrast limited adaptive histogram equalization (CLAHE) method and the inhomogeneity is corrected using Retinex approach.
View Article and Find Full Text PDFObjective: Boosting accuracy in automatically discriminating patients with Alzheimer's disease (AD) and normal controls (NC), based on multidimensional classification of longitudinal whole brain atrophy rates and their intermediate counterparts in analyzing magnetic resonance images (MRI).
Method: Longitudinal percentage of brain volume changes (PBVC) in two-year follow up and its intermediate counterparts in early 6-month and late 18-month are used as features in supervised and unsupervised classification procedures based on K-mean, fuzzy clustering method (FCM) and support vector machine (SVM). The most relevant features for classification are selected using discriminative analysis (DA) of features and their principal components (PC).
Deploying large numbers of mobile robots which can interact with each other produces swarm intelligent behavior. However, mobile robots are normally running with finite energy resource, supplied from finite battery. The limitation of energy resource required human intervention for recharging the batteries.
View Article and Find Full Text PDFThis paper uses wavelets in the detection comparison of breast cancer among the three main races in Malaysia: Chinese, Malays, and Indians followed by a system that evaluates the radiologist's findings over a period of time to gauge the radiologist's skills in confirming breast cancer cases. The db4 wavelet has been utilized to detect microcalcifications in mammogram-digitized images obtained from Malaysian women sample. The wavelet filter's detection evaluation was done by visual inspection by an expert radiologist to confirm the detection results of those pixels that corresponded to microcalcifications.
View Article and Find Full Text PDF