Data offloading is a promising low-cost and power-efficient solution for the expected high demands for high-speed connectivity in the near future. We investigate offloading efficiency in a cellular/light fidelity (LiFi) network. This offloading efficiency is a measure of the ratio of traffic carried by the LiFi network to the total traffic carried by both LiFi and cellular networks.
View Article and Find Full Text PDFUnderwater localization using visible-light communications is proposed based on neural networks (NNs) estimation of received signal strength (RSS). Our proposed work compromises two steps: data collection and NN training. First, data are collected with the aid of Zemax OpticStudio Monte Carlo ray tracing software, where we configure 40,000 receivers in a $100\;{\rm m} \times 100\;{\rm m}$ area in order to measure the channel gain for each detector in seawater.
View Article and Find Full Text PDFIn this paper, we introduce the idea of using adaptive hybrid modulation techniques to overcome channel fading effects on visible light communication (VLC) systems. A hybrid $ M $M-ary quadrature-amplitude modulation ($ M{\rm QAM} $MQAM) and multipulse pulse-position modulation (MPPM) technique is considered due to its ability to make gradual changes in spectral efficiency to cope with channel effects. First, the Zemax optics studio simulator is used to simulate dynamic VLC channels.
View Article and Find Full Text PDFIn this paper, the impact of water channels under different communication link parameters is studied for underwater visible light communication (UVLC). The objective is to highlight the best results for non-line of sight (NLoS) communication links. In addition, NLoS links are studied under different parameters: LED colors, viewing angle, receiving angle, and data rates.
View Article and Find Full Text PDF