Large and fast electrical current pulses are typically applied to conventional single-channel transverse MR gradient coils. However, these pulses result in a significant amount of power losses and heating of the coils. Previously, we presented a cylindrical multi-channel Z-gradient coil design that has better power efficiency compared to the single-channel design.
View Article and Find Full Text PDFPurpose: The rapid switching of the gradient fields induces eddy currents in neighboring metallic structures, causing undesirable effects. Numerical computations are thus required to understand eddy-currents effects for designing/implementing mitigation (involving passive shielding) and compensating techniques (using pre-emphasis). Previously, the network-analysis (NA) method was introduced to compute z-gradient eddy currents, although limited to a circularly symmetric and unconnected coil.
View Article and Find Full Text PDFEddy currents are induced in the metallic structures of MRI machines due to the rapid switching of gradient fields generated by gradient coils. Several undesirable effects are associated with the induced eddy currents such as heat, acoustic noise, and MR image distortions. Accurate transient eddy currents numerical computations are required to predict and ameliorate such effects.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Gradient coils are vital for Magnetic Resonance Imaging (MRI). Their rapid switching generates eddy currents in the surrounding metallic structures of the MRI scanner causing undesirable thermal, acoustic, and field distortion effects. The use of actively shielded gradient coils does not eliminate such undesirable effects totally.
View Article and Find Full Text PDFBackground: It has been hypothesized that the supply of chemical energy may be insufficient to fuel normal mechanical pump function in heart failure (HF). The creatine kinase (CK) reaction serves as the heart's primary energy reserve, and the supply of adenosine triphosphate (ATP flux) it provides is reduced in human HF. However, the relationship between the CK energy supply and the mechanical energy expended has never been quantified in the human heart.
View Article and Find Full Text PDFBackground: Phosphorus saturation transfer (ST) magnetic resonance spectroscopy can measure the rate of ATP generated from phosphocreatine (PCr) via creatine kinase (CK) in the human heart. Recently, the triple-repetition time ST (TRiST) method was introduced to measure the CK pseudo-first-order rate constant kf in three acquisitions. In TRiST, the longitudinal relaxation time of PCr while γ-ATP is saturated, T1`, is measured for each subject, but suffers from low SNR because the PCr signal is reduced due to exchange with saturated γ-ATP, and the short repetition time of one of the acquisitions.
View Article and Find Full Text PDFPurpose: Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy.
Methods: A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom.
The spin lattice (T(1)) and spin-spin (T(2)) relaxation times, along with the proton density (PD) contain almost all of the information that (1)H MRI routinely uses in clinical diagnosis and research, but are seldom imaged directly. Here, three methods for directly imaging T(1), T(2), and PD with the least possible number of acquisitions - three, are presented. All methods utilize long 0° self-refocusing adiabatic pre-pulses instead of spin-echoes to encode the T(2) information prior to a conventional gradient-echo MRI sequence.
View Article and Find Full Text PDFPurpose: Use of external coils with internal detectors or conductors is challenging at 7 Tesla (T) due to radiofrequency (RF) field (B1 ) penetration, B1 -inhomogeneity, mutual coupling, and potential local RF heating. The present study tests whether the near-quadratic gains in signal-to-noise ratio and field-of-view with field-strength previously reported for internal loopless antennae at 7T can suffice to perform MRI with an interventional transmit/receive antenna without using any external coils.
Methods: External coils were replaced by semi-rigid or biocompatible transmit/receive loopless antennae requiring only a few Watts of peak RF power.
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
January 2013
Purpose: To assess possible damage to the hearing of experimental and companion animal subjects of magnetic resonance imaging (MRI) scans.
Materials And Methods: Using animal hearing threshold data and sound level measurements from typical MRI pulse sequences, we estimated "equivalent loudness" experienced by several experimental and companion animals commonly subjects of MRI scans. We compared the equivalent loudness and exam duration to safe noise standards set by the National Institute for Occupational Safety and Health (NIOSH).
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
January 2012
Proc Int Soc Magn Reson Med Sci Meet Exhib Int Soc Magn Reson Med Sci Meet Exhib
January 2012
The "loopless antenna" is an interventional MRI detector consisting of a tuned coaxial cable and an extended inner conductor or "whip". A limitation is the poor sensitivity afforded at, and immediately proximal to, its distal end, which is exacerbated by the extended whip length when the whip is uniformly insulated. It is shown here that tapered insulation dramatically improves the distal sensitivity of the loopless antenna by pushing the current sensitivity toward the tip.
View Article and Find Full Text PDFCardiac phosphorus magnetic resonance spectroscopy (MRS) with surface coils promises better quantification at 3 Tesla (T) from improved signal-to-noise ratios and spectral resolution compared with 1.5 T. However, Bloch equation and field analyses at 3T show that for efficient quantitative MRS protocols using small-angle adiabatic (BIR4/BIRP) pulses the excitation-field is limited by radiofrequency (RF) power requirements and power deposition.
View Article and Find Full Text PDFInterventional, "loopless antenna" MRI detectors are currently limited to 1.5 T. This study investigates whether loopless antennae offer signal-to-noise ratio (SNR) and field-of-view (FOV) advantages at higher fields, and whether device heating can be controlled within safe limits.
View Article and Find Full Text PDFThe homogeneity and stability of the static magnetic field are of paramount importance to the accuracy of MR procedures that are sensitive to phase errors and magnetic field inhomogeneity. It is shown that intense gradient utilization in clinical horizontal-bore superconducting MR scanners of three different vendors results in main magnetic fields that vary on a long time scale both spatially and temporally by amounts of order 0.8-2.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
January 2005
We develop a simple yet effective technique for motion artifact suppression in ultrasound images reconstructed from multiple acquisitions. Assuming a rigid-body motion model, a navigator echo is computed for each acquisition and then registered to estimate the motion in between acquisitions. By detecting this motion, it is possible to compensate for it in the reconstruction step to obtain images that are free of lateral motion artifacts.
View Article and Find Full Text PDFOf the various techniques employed to quantify temperature changes by MR, proton resonance frequency (PRF) shift-based phase-difference imaging (PDI) is the most accurate and widely used. However, PDI is associated with various artifacts. Motivated by these limitations, we developed a new method to monitor temperature changes by MRI using the balanced steady-state free precession (balanced-SSFP) pulse sequence.
View Article and Find Full Text PDF