During urethral catheterization, sliding friction can cause discomfort and even hemorrhaging. In this report, we use a lubricant-impregnated polydimethylsiloxane coating to reduce the sliding friction of a catheter. Using a pig urethra attached to a microforce testing system, we found that a lubricant-impregnated catheter reduces the sliding friction during insertion by more than a factor of two.
View Article and Find Full Text PDFThe potential for masks to act as fomites in the transmission of SARS-CoV-2 has been suggested but not demonstrated experimentally or observationally. In this study, we aerosolized a suspension of SARS-CoV-2 in saliva and used a vacuum pump to pull the aerosol through six different types of masks. After 1 h at 28 °C and 80% RH, SARS-CoV-2 infectivity was not detectable on an N95 and surgical mask, was reduced by 0.
View Article and Find Full Text PDFUsing biodegradable materials such as polyhydroxyalkanoates (PHA) and poly(butylene succinate--adipate) (PBSA) to develop single-use agricultural plastics like bale netting may reduce the negative effects of plastic accumulation in the rumens of cattle. The objective of this research was to assess the long-term degradation of PHA, PBSA, and a PBSA:PHA blend (Blend) compared with a low-density polyethylene (LDPE) control. Polyhydroxyalkanoate, PBSA, Blend, and LDPE films were incubated in the rumens of 3 cannulated, nonlactating Holsteins for up to 150 d.
View Article and Find Full Text PDFDue to the occurrence of plastic impaction in ruminants and its deleterious effects on health and production, it is necessary to determine the suitability of biodegradable polymers to replace polyethylene-based agricultural plastics, such as hay netting. The objectives of this study were to evaluate the clearance of a polyhydroxyalkanoate (PHA) and poly(butylene succinate--adipate) (PBSA) melt-blend polymer from the rumen when fed to cattle and subsequent animal health. Twelve Holstein bull calves were dosed with an encapsulated 13.
View Article and Find Full Text PDFUsing polyhydroxyalkanoate (PHA) materials for ruminal boluses could allow for longer sustained release of drugs and hormones that would reduce administration time and unneeded animal discomfort caused by continuous administration. The objective of this study was to determine ruminal degradability and kinetics of biodegradable polymers and blends. A proprietary PHA-based polymer, poly(butylene succinate--adipate) (PBSA), PBSA:PHA melt blends, and forage controls were incubated in rumen fluid for up to 240 h.
View Article and Find Full Text PDFACS Biomater Sci Eng
March 2022
Patients with peripherally inserted central catheters (PICCs) are routinely discharged with the catheters in place. These patients experience complications due to undetected thrombosis or accidental dislodgement, with tracking through limited X-ray imaging. Developing catheters with the capability to be tracked without the need for X-ray imaging would greatly benefit these patients by decreasing patient stress, reducing time to diagnosis, and increasing nursing home capabilities.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
September 2021
Urinary catheters often become contaminated with biofilms, resulting in catheter-associated urinary tract infections (CAUTIs) that adversely affect patient outcomes. Histotripsy is a noninvasive focused ultrasound therapy previously developed for the noninvasive ablation of cancerous tumors and soft tissues. Histotripsy has also previously shown the ability to treat biofilms on glass slides and surgical meshes.
View Article and Find Full Text PDF3D-printed bone scaffolds hold great promise for the individualized treatment of critical-size bone defects. Among the resorbable polymers available for use as 3D-printable scaffold materials, poly(ε-caprolactone) (PCL) has many benefits. However, its relatively low stiffness and lack of bioactivity limit its use in load-bearing bone scaffolds.
View Article and Find Full Text PDFAlthough age-at-injury influences chronic recovery from traumatic brain injury (TBI), the differential effects of age on early outcome remain understudied. Using a male murine model of moderate contusion injury, we investigated the underlying mechanism(s) regulating the distinct response between juvenile and adult TBI. We demonstrate similar biomechanical and physical properties of naive juvenile and adult brains.
View Article and Find Full Text PDFFrom therapeutic delivery to sustainable packaging, manipulation of biopolymers into nanostructures imparts biocompatibility to numerous materials with minimal environmental pollution during processing. While biopolymers are appealing natural based materials, the lack of nanoparticle (NP) physicochemical consistency has decreased their nanoscale translation into actual products. Insights regarding the macroscale and nanoscale property variation of gelatin, one of the most common biopolymers already utilized in its bulk form, are presented.
View Article and Find Full Text PDFUnlabelled: Vat Photopolymerization (stereolithography, SLA), an Additive Manufacturing (AM) or 3D printing technology, holds particular promise for the fabrication of tissue scaffolds for use in regenerative medicine. Unlike traditional tissue scaffold fabrication techniques, SLA is capable of fabricating designed scaffolds through the selective photopolymerization of a photopolymer resin on the micron scale. SLA offers unprecedented control over scaffold porosity and permeability, as well as pore size, shape, and interconnectivity.
View Article and Find Full Text PDFWater-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures.
View Article and Find Full Text PDFMater Sci Eng C Mater Biol Appl
March 2016
Biomedical polymers are exposed in vivo to ionizing radiation as implants, coatings and bystander materials. High levels of ionizing radiation (e.g.
View Article and Find Full Text PDFPeripherally inserted central catheters (PICCs) are hollow polymeric tubes that transport nutrients, blood and medications to neonates. To determine proper PICC placement, frequent X-ray imaging of neonates is performed. Because X-rays pose severe health risks to neonates, safer alternatives are needed.
View Article and Find Full Text PDFAlthough bone-patellar tendon-bone (B-PT-B) autografts are the gold standard for repair of anterior cruciate ligament ruptures, they suffer from drawbacks such as donor site morbidity and limited supply. Engineered tissues modeled after B-PT-B autografts are promising alternatives because they have the potential to regenerate connective tissue and facilitate osseointegration. Towards the long-term goal of regenerating ligaments and their bony insertions, the objective of this study was to construct 2D meshes and 3D cylindrical composite scaffolds - possessing simultaneous region-wise differences in fiber orientation, diameter, chemistry and mechanical properties - by electrospinning two different polymers from off-set spinnerets.
View Article and Find Full Text PDFOne weakness with currently researched skeletal muscle tissue replacement is the lack of contraction and relaxation during the regenerative process. A biocompatible scaffold that can act similar to the muscle would be a pivotal innovation. Coaxial electrospun scaffolds, capable of movement with electrical stimulation, were created using poly(ɛ-caprolactone) (PCL), multiwalled carbon nanotubes (MWCNT), and a (83/17 or 40/60) poly(acrylic acid)/poly(vinyl alcohol) (PAA/PVA) hydrogel.
View Article and Find Full Text PDFCalcium phosphate ceramics (CPCs) have been widely used as biomaterials for the regeneration of bone tissue because of their ability to induce osteoblastic differentiation in progenitor cells. Despite the progress made towards fabricating CPCs possessing a range of surface features and chemistries, the influence of material properties in orchestrating cellular events such as adhesion and differentiation is still poorly understood. Specifically, questions such as why certain CPCs may be more osteoinductive than others, and how material properties contribute to osteoinductivity/osteoconductivity remain unanswered.
View Article and Find Full Text PDFBiomaterial scaffolds with gradients in architecture, mechanical and chemical properties have the potential to improve the osseointegration of ligament grafts by recapitulating phenotypic gradients that exist at the natural ligament-bone (L-B) interface. Towards the larger goal of regenerating the L-B interface, this in vitro study was performed to investigate the potential of two scaffolds with mineral gradients in promoting a spatial gradient of osteoblastic differentiation. Specifically, the first graded scaffold was fabricated by co-electrospinning two polymer solutions (one doped with nano-hydroxyapatite particles) from offset spinnerets, while the second was created by immersing the first scaffold in a 5 × simulated body fluid.
View Article and Find Full Text PDFCurrent scaffolds for the regeneration of anterior cruciate ligament injuries are unable to capture intricate mechanical and chemical gradients present in the natural ligament-bone interface. As a result, stress concentrations can develop at the scaffold-bone interface, leading to poor osseointegration. Hence, scaffolds that possess appropriate mechano-chemical gradients would help establish normal loading properties at the interface, while promoting scaffold integration with bone.
View Article and Find Full Text PDF