Publications by authors named "Abby Sirulnik"

Invasive insects may dramatically alter resource cycling and productivity in forest ecosystems. Yet, although responses of individual trees should both reflect and affect ecosystem-scale responses, relationships between physiological- and ecosystem-scale responses to invasive insects have not been extensively studied. To address this issue, we examined changes in soil nitrogen (N) cycling, N uptake and allocation, and needle biochemistry and physiology in eastern hemlock (Tsuga canadensis (L) Carr) saplings, associated with infestation by the hemlock woolly adelgid (HWA) (Adelges tsugae Annand), an invasive insect causing widespread decline of eastern hemlock in the eastern USA.

View Article and Find Full Text PDF

Invasive, non-indigenous, phytophagous insects have caused widespread declines in several dominant tree species. The decline in dominant tree species may lead to cascading effects on other tree and microbial species and their interactions, affecting forest recovery following the decline. In the eastern USA, eastern hemlock (Tsuga canadensis (L.

View Article and Find Full Text PDF

The forests of the San Bernardino Mountains have been subject to ozone and nitrogen (N) deposition for some 60 years. Much work has been done to assess the impacts of these pollutants on trees, but little is known about how the diverse understory flora has fared. Understory vegetation has declined in diversity in response to elevated N in the eastern U.

View Article and Find Full Text PDF

The isotopic composition of nitrate collected from aerosols, fog, and precipitation was measured and found to have a large 17O anomaly with delta17O values ranging from 20 percent per thousand to 30% percent per thousand (delta17O = delta17O - 0.52(delta18O)). This 17O anomaly was used to trace atmospheric deposition of nitrate to a semiarid ecosystem in southern California.

View Article and Find Full Text PDF