Publications by authors named "Abbod M"

Quantitative Structure-Activity Relationship (QSAR) analysis greatly enhances the development and research of pesticides. This study employed Multiple Linear Regression (MLR), machine learning (ML), and read-across (RA) approaches to investigate the combined effects of binary mixtures of fungicides on Macrophomina phaseolina. Using the Fixed Ratio Ray Design (FRRD) method, 75 binary mixtures of six frequently used fungicides were generated, with many exhibiting additive interactions as indicated by the Concentration Addition (CA) and Independent Action (IA) models.

View Article and Find Full Text PDF

Sterol Biosynthesis Inhibitors (SBIs) are a major class of fungicides used globally. Their widespread application in agriculture raises concerns about potential harm and toxicity to non-target organisms, including humans. To address these concerns, a quantitative structure-toxicity relationship (QSTR) modeling approach has been developed to assess the acute toxicity of 45 different SBIs.

View Article and Find Full Text PDF

Fungicide mixtures are an effective strategy in delaying the development of fungicide resistance. In this research, a fixed ratio ray design method was used to generate fifty binary mixtures of five fungicides with diverse modes of action. The interaction of these mixtures was then analyzed using CA and IA models.

View Article and Find Full Text PDF

Objective: Our group has shown that central venous pressure (CVP) can optimise atrioventricular (AV) delay in temporary pacing (TP) after cardiac surgery. However, the signal-to-noise ratio (SNR) is influenced both by the methods used to mitigate the pressure effects of respiration and the number of heartbeats analysed. This paper systematically studies the effect of different analysis methods on SNR to maximise the accuracy of this technique.

View Article and Find Full Text PDF

Gait disorder is common among people with neurological disease and musculoskeletal disorders. The detection of gait disorders plays an integral role in designing appropriate rehabilitation protocols. This study presents a clinical gait analysis of patients with polymyalgia rheumatica to determine impaired gait patterns using machine learning models.

View Article and Find Full Text PDF

In this work, the impact of implementing Deep Reinforcement Learning (DRL) in predicting the channel parameters for user devices in a Power Domain Non-Orthogonal Multiple Access system (PD-NOMA) is investigated. In the channel prediction process, DRL based on deep Q networks (DQN) algorithm will be developed and incorporated into the NOMA system so that this developed DQN model can be employed to estimate the channel coefficients for each user device in NOMA system. The developed DQN scheme will be structured as a simplified approach to efficiently predict the channel parameters for each user in order to maximize the downlink sum rates for all users in the system.

View Article and Find Full Text PDF

In this study, the influence of adopting Reinforcement Learning (RL) to predict the channel parameters for user devices in a Power Domain Multi-Input Single-Output Non-Orthogonal Multiple Access (MISO-NOMA) system is inspected. In the channel prediction-based RL approach, the Q-learning algorithm is developed and incorporated into the NOMA system so that the developed Q-model can be employed to predict the channel coefficients for every user device. The purpose of adopting the developed Q-learning procedure is to maximize the received downlink sum-rate and decrease the estimation loss.

View Article and Find Full Text PDF

The segmentation of magnetic resonance (MR) images is a crucial task for creating pseudo computed tomography (CT) images which are used to achieve positron emission tomography (PET) attenuation correction. One of the main challenges of creating pseudo CT images is the difficulty to obtain an accurate segmentation of the bone tissue in brain MR images. Deep convolutional neural networks (CNNs) have been widely and efficiently applied to perform MR image segmentation.

View Article and Find Full Text PDF

Permanent pacemaker (PPM) implantation occurs in up to 5 % of patients after cardiac surgery but there is little consensus on how long to wait between surgery and PPM insertion. Predicting the likelihood of a patient being pacing dependent 30 days after implant can aid with this timing decision and avoid unnecessary observation time waiting for intrinsic conduction to recover. In this paper, we introduce a new approach for the prediction of PPM dependency at 30 days after implant in patients who have undergone recent cardiac surgery.

View Article and Find Full Text PDF

There are many surgical operations performed daily in operation rooms worldwide. Adequate anesthesia is needed during an operation. Besides hypnosis, adequate analgesia is critical to prevent autonomic reactions.

View Article and Find Full Text PDF

In a non-orthogonal multiple access (NOMA) system, the successive interference cancellation (SIC) procedure is typically employed at the receiver side, where several user's signals are decoded in a subsequent manner. Fading channels may disperse the transmitted signal and originate dependencies among its samples, which may affect the channel estimation procedure and consequently affect the SIC process and signal detection accuracy. In this work, the impact of Deep Neural Network (DNN) in explicitly estimating the channel coefficients for each user in NOMA cell is investigated in both Rayleigh and Rician fading channels.

View Article and Find Full Text PDF

Wearable sensors are becoming very popular recently due to their ease of use and flexibility in recording data from home [...

View Article and Find Full Text PDF
Article Synopsis
  • The paper introduces a portable device-friendly algorithm for classifying arrhythmias using ECG recurrence plots and CNN classifiers, leveraging public databases for data input.
  • It employs a two-stage classification process with ResNet-18 for detecting ventricular fibrillation and noise, and ResNet-50 for identifying other arrhythmias like atrial fibrillation and premature contractions.
  • The proposed method demonstrates high accuracy rates (97.21% and 98.36%), improved memory efficiency for portable use, but faces challenges with data imbalance in the first stage due to grouping multiple arrhythmia types under a single label.
View Article and Find Full Text PDF

Autonomous Vehicles (AVs) have the potential to solve many traffic problems, such as accidents, congestion and pollution. However, there are still challenges to overcome, for instance, AVs need to accurately perceive their environment to safely navigate in busy urban scenarios. The aim of this paper is to review recent articles on computer vision techniques that can be used to build an AV perception system.

View Article and Find Full Text PDF

Gait and posture studies have gained much prominence among researchers and have attracted the interest of clinicians. The ability to detect gait abnormality and posture disorder plays a crucial role in the diagnosis and treatment of some diseases. Microsoft Kinect is presented as a noninvasive sensor essential for medical diagnostic and therapeutic purposes.

View Article and Find Full Text PDF

. In this paper, a new approach of extracting and measuring the variability in electroencephalogram (EEG) was proposed to assess the depth of anesthesia (DOA) under general anesthesia..

View Article and Find Full Text PDF

This study evaluates cardiovascular and cerebral hemodynamics systems by only using non-invasive electrocardiography (ECG) signals. The Massachusetts General Hospital/Marquette Foundation (MGH/MF) and Cerebral Hemodynamic Autoregulatory Information System Database (CHARIS DB) from the PhysioNet database are used for cardiovascular and cerebral hemodynamics, respectively. For cardiovascular hemodynamics, the ECG is used for generating the arterial blood pressure (ABP), central venous pressure (CVP), and pulmonary arterial pressure (PAP).

View Article and Find Full Text PDF

According to a recently conducted survey on surgical complication mortality rate, 47% of such cases are due to anesthetics overdose. This indicates that there is an urgent need to moderate the level of anesthesia. Recently deep learning (DL) methods have played a major role in estimating the depth of Anesthesia (DOA) of patients and has played an essential role in control anesthesia overdose.

View Article and Find Full Text PDF

In this paper, a new model known as YOLO-v5 is initiated to detect defects in PCB. In the past many models and different approaches have been implemented in the quality inspection for detection of defect in PCBs. This algorithm is specifically selected due to its efficiency, accuracy and speed.

View Article and Find Full Text PDF

Pain is a subjective feeling; it is a sensation that every human being must have experienced all their life. Yet, its mechanism and the way to immune to it is still a question to be answered. This review presents the mechanism and correlation of pain and stress, their assessment and detection approach with medical devices and wearable sensors.

View Article and Find Full Text PDF

Hypertension affects a huge number of people around the world. It also has a great contribution to cardiovascular- and renal-related diseases. This study investigates the ability of a deep convolutional autoencoder (DCAE) to generate continuous arterial blood pressure (ABP) by only utilizing photoplethysmography (PPG).

View Article and Find Full Text PDF

Recent emerging hybrid technology of positron emission tomography/magnetic resonance (PET/MR) imaging has generated a great need for an accurate MR image-based PET attenuation correction. MR image segmentation, as a robust and simple method for PET attenuation correction, has been clinically adopted in commercial PET/MR scanners. The general approach in this method is to segment the MR image into different tissue types, each assigned an attenuation constant as in an X-ray CT image.

View Article and Find Full Text PDF

In this study, the biological activities and mode of action of 3-butylidene phthalide (3-BPH) were studied. 3-BPH had a superior efficiency against microsclerotia of Macrophomina phaseolina compared to the commercial fungicide tricyclazole. The microsclerotia formation and pigmentation were inhibited at 100 μg/mL.

View Article and Find Full Text PDF

Recently, significant developments have been achieved in the field of artificial intelligence, in particular the introduction of deep learning technology that has improved the learning and prediction accuracy to unpresented levels, especially when dealing with big data and high-resolution images. Significant developments have occurred in the area of medical signal processing, measurement techniques, and health monitoring, such as vital biological signs for biomedical systems and noise and vibration of mechanical systems, which are carried out by instruments that generate large data sets. These big data sets, ultimately driven by high population growth, would require Artificial Intelligence techniques to analyse and model.

View Article and Find Full Text PDF

The emulation of human behavior for autonomous problem solving has been an interdisciplinary field of research. Generally, classical control systems are used for static environments, where external disturbances and changes in internal parameters can be fully modulated before or neglected during operation. However, classical control systems are inadequate at addressing environmental uncertainty.

View Article and Find Full Text PDF