Objective: To investigate whether persons with treatment-resistant Lyme arthritis-associated HLA alleles might develop arthritis as a result of an autoimmune reaction triggered by Borrelia burgdorferi outer surface protein A (OspA), the Lyme disease vaccine antigen.
Methods: Persons in whom inflammatory arthritis had developed after Lyme disease vaccine (cases) were compared with 3 control groups: 1) inflammatory arthritis but not Lyme disease vaccine (arthritis controls), 2) Lyme disease vaccine but not inflammatory arthritis (vaccine controls), and 3) neither Lyme disease vaccine nor inflammatory arthritis (normal controls). HLA-DRB1 allele typing, Western blotting for Lyme antigen, and T cell reactivity testing were performed.
A panel of CD4 T-cell clones was isolated from synovial fluid by single cell flow cytometry from a patient with treatment-resistant Lyme arthritis using a DRB1*0401 major histocompatibility complex (MHC) class II tetramer covalently loaded with outer surface protein A (OspA) peptide164-175, an immunodominant epitope of Borrelia burgdorferi. Sequencing of the T-cell receptors of the OspA reactive clones showed significant skewing of the T-cell receptor repertoire. Of the 101 T-cell clones sequenced, 81 possessed TCR beta chains that were present in at least one other clone isolated.
View Article and Find Full Text PDFThe antigenic component of a common Lyme disease vaccine is recombinant outer surface protein A (rOspA) of Borrelia burgdorferi (Bb), the causative agent of Lyme disease. Coincidentally, patients with chronic, treatment-resistant Lyme arthritis develop an immune response against OspA, whereas those with acute Lyme disease usually do not. Treatment-resistant Lyme arthritis occurs in a subset of Lyme arthritis patients and is linked to HLA.
View Article and Find Full Text PDF