Publications by authors named "Abbey Nydam"

Endogenous visuo-spatial attention is under the control of a fronto-parietal network of brain regions. One key node in this network, the intra-parietal sulcus (IPS), plays a crucial role in maintaining endogenous attention, but little is known about its ongoing physiology and network dynamics during different attentional states. Here, we investigated the reactivity of the left IPS in response to brain stimulation under different states of selective attention.

View Article and Find Full Text PDF

Accurate quantification of effect sizes has the power to motivate theory and reduce misinvestment of scientific resources by informing power calculations during study planning. However, a combination of publication bias and small sample sizes (∼ = 25) hampers certainty in current effect size estimates. We sought to determine the extent to which sample sizes may produce errors in effect size estimates for four commonly used paradigms assessing attention, executive function, and implicit learning (attentional blink, multitasking, contextual cueing, and serial response task).

View Article and Find Full Text PDF

Invasive and non-invasive brain stimulation methods are widely used in neuroscience to establish causal relationships between distinct brain regions and the sensory, cognitive and motor functions they subserve. When combined with concurrent brain imaging, such stimulation methods can reveal patterns of neuronal activity responsible for regulating simple and complex behaviours at the level of local circuits and across widespread networks. Understanding how fluctuations in physiological states and task demands might influence the effects of brain stimulation on neural activity and behaviour is at the heart of how we use these tools to understand cognition.

View Article and Find Full Text PDF

Visual statistical learning describes the encoding of structure in sensory input, and it has important consequences for cognition and behaviour. Higher-order brain regions in the prefrontal and posterior parietal cortices have been associated with statistical learning behaviours. Yet causal evidence of a cortical contribution remains limited.

View Article and Find Full Text PDF

Attentional performance is facilitated by exploiting regularities and redundancies in the environment by way of incidental statistical learning. For example, during visual search, response times to a target are reduced by repeating distractor configurations-a phenomenon known as contextual cueing (Chun & Jiang, 1998). A range of neuroscientific methods have provided evidence that incidental statistical learning relies on subcortical neural structures associated with long-term memory, such as the hippocampus.

View Article and Find Full Text PDF

Plasticity can be induced in human cortex using paired associative stimulation (PAS), which repeatedly and predictably pairs a peripheral electrical stimulus with transcranial magnetic stimulation (TMS) to the contralateral motor region. Many studies have reported small or inconsistent effects of PAS. Given that uncertain stimuli can promote learning, the predictable nature of the stimulation in conventional PAS paradigms might serve to attenuate plasticity induction.

View Article and Find Full Text PDF

Paired associative stimulation (PAS) induces changes in the excitability of human sensorimotor cortex that outlast the procedure. PAS typically involves repeatedly pairing stimulation of a peripheral nerve that innervates an intrinsic hand muscle with transcranial magnetic stimulation over the representation of that muscle in the primary motor cortex. Depending on the timing of the stimuli (interstimulus interval of 25 or 10 ms), PAS leads to either an increase (PAS25) or a decrease (PAS10) in excitability.

View Article and Find Full Text PDF